import sys,os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import numpy as np import argparse import torch import librosa from tqdm import tqdm from hubert import hubert_model def load_audio(file: str, sr: int = 16000): x, sr = librosa.load(file, sr=sr) return x def load_model(path, device): model = hubert_model.hubert_soft(path) model.eval() model.half() model.to(device) return model def pred_vec(model, wavPath, vecPath, device): feats = load_audio(wavPath) feats = torch.from_numpy(feats).to(device) feats = feats[None, None, :].half() with torch.no_grad(): vec = model.units(feats).squeeze().data.cpu().float().numpy() # print(vec.shape) # [length, dim=256] hop=320 np.save(vecPath, vec, allow_pickle=False) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) parser.add_argument("-v", "--vec", help="vec", dest="vec", required=True) args = parser.parse_args() print(args.wav) print(args.vec) os.makedirs(args.vec, exist_ok=True) wavPath = args.wav vecPath = args.vec device = "cuda" if torch.cuda.is_available() else "cpu" hubert = load_model(os.path.join("hubert_pretrain", "hubert-soft-0d54a1f4.pt"), device) for spks in os.listdir(wavPath): if os.path.isdir(f"./{wavPath}/{spks}"): os.makedirs(f"./{vecPath}/{spks}", exist_ok=True) files = [f for f in os.listdir(f"./{wavPath}/{spks}") if f.endswith(".wav")] for file in tqdm(files, desc=f'Processing vec {spks}'): file = file[:-4] pred_vec(hubert, f"{wavPath}/{spks}/{file}.wav", f"{vecPath}/{spks}/{file}.vec", device)