import gradio as gr import os import requests from tqdm import tqdm import plotly.express as px import pandas as pd from svc_inference import main from whisper.inference import check_and_download_model # データの作成 data = { 'id': list(range(1, 57)), # 1から56までの数字 'x': [ 28, 25, 5, 12, 8, 2, 0, -20, -15, -12, -20, 8, -30, 25, 0, 0, 2, -25, -25, 20, 15, -2, 0, 15, -30, 15, 8, 28, -10, -22, 20, 20, 8, 20, 0, 0, -8, -10, -32, 0, 0, -8, 2, -25, -32, -20, -18, -5, 15, -22, -25, -28, -30, 10, 25, 28 ], 'y': [ 0, -5, -15, -20, -18, -3, 8, 8, 12, 10, 10, -20, 6, -3, 12, -15, 12, 17, 10, -8, -15, -22, 8, 15, 10, -15, -18, -10, 8, 5, -10, -8, -25, -5, -12, 12, 15, 6, 17, -12, -8, -8, 15, 17, 25, 4, 4, 0, 0, -20, 12, 12, 15, -19, 0, 0 ] } df = pd.DataFrame(data) def create_plot(): fig = px.scatter(df, x='x', y='y', text='id', title='Voice Timbre Feature Mapping') # マーカーのスタイルを設定(紫系の色に設定) fig.update_traces( marker=dict( size=10, color='#663399', # 紫色 line=dict(color='#4B0082', width=1) # より暗い紫の境界線 ), textposition='top center' ) # レイアウトの設定 fig.update_layout( height=600, width=800, clickmode='event+select', plot_bgcolor='#eeeeee', paper_bgcolor='white', xaxis=dict( showgrid=True, zeroline=True, range=[-35, 35] # x軸の範囲を設定 ), yaxis=dict( showgrid=True, zeroline=True, range=[-30, 30] # y軸の範囲を設定 ) ) return fig def run_main(audio_file, shift, speaker_id): # 固定の引数を設定 class Args: pass args = Args() args.config = "configs/base.yaml" args.model = "./vits_pretrain/sovits5.0.pretrain.pth" speaker_str = f"{speaker_id:04d}" args.spk = f"./configs/singers/singer{speaker_str}.npy" args.wave = audio_file print(audio_file) args.shift = shift # オプショナルパラメータのデフォルト値設定 args.ppg = None args.vec = None args.pit = None args.enable_retrieval = False args.retrieval_index_prefix = "" args.retrieval_ratio = 0.5 args.n_retrieval_vectors = 3 args.hubert_index_path = None args.whisper_index_path = None args.debug = False try: main(args) return "svc_out.wav" # 音声ファイルのパスを返す except Exception as e: return None # Gradio インターフェースの作成 with gr.Blocks() as demo: gr.Markdown("# SVC (Singing Voice Conversion) System") with gr.Row(): with gr.Column(scale=1.15): plot = gr.Plot(value=create_plot()) with gr.Column(scale=1): # 入力音声のアップロード input_audio = gr.Audio( label="Upload the audio you want to convert.", type="filepath" # ファイルパスとして取得 ) # Speaker ID の選択 speaker_id = gr.Number( label="Speaker ID (1-56)", value=1, minimum=1, maximum=56, step=1 ) # Pitch シフトのスライダー shift = gr.Slider( minimum=-12, maximum=12, value=0, step=1, label="Pitch Shift (from -12 to +12) " ) # ボタン run_btn = gr.Button(value="Convert Singing Voice", variant="primary", size="lg") # 出力表示用 output_audio = gr.Audio(label="Audio After Conversion") run_btn.click( fn=run_main, inputs=[input_audio, shift, speaker_id], outputs=[output_audio] ) # アプリケーションの起動 if __name__ == "__main__": demo.launch()