# MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import os import random import torch import torch.utils.data import numpy as np from librosa.util import normalize from scipy.io.wavfile import read from librosa.filters import mel as librosa_mel_fn class TacotronSTFT(torch.nn.Module): def __init__(self, filter_length=512, hop_length=160, win_length=512, n_mel_channels=80, sampling_rate=16000, mel_fmin=0.0, mel_fmax=None, center=False, device='cpu'): super(TacotronSTFT, self).__init__() self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate self.n_fft = filter_length self.hop_size = hop_length self.win_size = win_length self.fmin = mel_fmin self.fmax = mel_fmax self.center = center mel = librosa_mel_fn( sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax) mel_basis = torch.from_numpy(mel).float().to(device) hann_window = torch.hann_window(win_length).to(device) self.register_buffer('mel_basis', mel_basis) self.register_buffer('hann_window', hann_window) def linear_spectrogram(self, y): assert (torch.min(y.data) >= -1) assert (torch.max(y.data) <= 1) y = torch.nn.functional.pad(y.unsqueeze(1), (int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, center=self.center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) spec = torch.norm(spec, p=2, dim=-1) return spec def mel_spectrogram(self, y): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert(torch.min(y.data) >= -1) assert(torch.max(y.data) <= 1) y = torch.nn.functional.pad(y.unsqueeze(1), (int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, center=self.center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(self.mel_basis, spec) spec = self.spectral_normalize_torch(spec) return spec def spectral_normalize_torch(self, magnitudes): output = self.dynamic_range_compression_torch(magnitudes) return output def dynamic_range_compression_torch(self, x, C=1, clip_val=1e-5): return torch.log(torch.clamp(x, min=clip_val) * C)