import sys,os sys.path.append(os.path.dirname(os.path.abspath(__file__))) import argparse import torch import torch.multiprocessing as mp from omegaconf import OmegaConf from vits_extend.train import train torch.backends.cudnn.benchmark = True if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, required=True, help="yaml file for configuration") parser.add_argument('-p', '--checkpoint_path', type=str, default=None, help="path of checkpoint pt file to resume training") parser.add_argument('-n', '--name', type=str, required=True, help="name of the model for logging, saving checkpoint") args = parser.parse_args() hp = OmegaConf.load(args.config) with open(args.config, 'r') as f: hp_str = ''.join(f.readlines()) assert hp.data.hop_length == 320, \ 'hp.data.hop_length must be equal to 320, got %d' % hp.data.hop_length args.num_gpus = 0 torch.manual_seed(hp.train.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(hp.train.seed) args.num_gpus = torch.cuda.device_count() print('Batch size per GPU :', hp.train.batch_size) if args.num_gpus > 1: mp.spawn(train, nprocs=args.num_gpus, args=(args, args.checkpoint_path, hp, hp_str,)) else: train(0, args, args.checkpoint_path, hp, hp_str) else: print('No GPU find!')