import tqdm import torch import torch.nn.functional as F def validate(hp, args, generator, discriminator, valloader, stft, writer, step, device): generator.eval() discriminator.eval() torch.backends.cudnn.benchmark = False loader = tqdm.tqdm(valloader, desc='Validation loop') mel_loss = 0.0 for idx, (ppg, ppg_l, vec, pit, spk, spec, spec_l, audio, audio_l) in enumerate(loader): ppg = ppg.to(device) vec = vec.to(device) pit = pit.to(device) spk = spk.to(device) ppg_l = ppg_l.to(device) audio = audio.to(device) if hasattr(generator, 'module'): fake_audio = generator.module.infer(ppg, vec, pit, spk, ppg_l)[ :, :, :audio.size(2)] else: fake_audio = generator.infer(ppg, vec, pit, spk, ppg_l)[ :, :, :audio.size(2)] mel_fake = stft.mel_spectrogram(fake_audio.squeeze(1)) mel_real = stft.mel_spectrogram(audio.squeeze(1)) mel_loss += F.l1_loss(mel_fake, mel_real).item() if idx < hp.log.num_audio: spec_fake = stft.linear_spectrogram(fake_audio.squeeze(1)) spec_real = stft.linear_spectrogram(audio.squeeze(1)) audio = audio[0][0].cpu().detach().numpy() fake_audio = fake_audio[0][0].cpu().detach().numpy() spec_fake = spec_fake[0].cpu().detach().numpy() spec_real = spec_real[0].cpu().detach().numpy() writer.log_fig_audio( audio, fake_audio, spec_fake, spec_real, idx, step) mel_loss = mel_loss / len(valloader.dataset) writer.log_validation(mel_loss, generator, discriminator, step) torch.backends.cudnn.benchmark = True