atsushieee's picture
Upload folder using huggingface_hub
9791162
raw
history blame
4.26 kB
# MIT License
#
# Copyright (c) 2020 Jungil Kong
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import os
import random
import torch
import torch.utils.data
import numpy as np
from librosa.util import normalize
from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn
class TacotronSTFT(torch.nn.Module):
def __init__(self, filter_length=512, hop_length=160, win_length=512,
n_mel_channels=80, sampling_rate=16000, mel_fmin=0.0,
mel_fmax=None, center=False, device='cpu'):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.n_fft = filter_length
self.hop_size = hop_length
self.win_size = win_length
self.fmin = mel_fmin
self.fmax = mel_fmax
self.center = center
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax)
mel_basis = torch.from_numpy(mel).float().to(device)
hann_window = torch.hann_window(win_length).to(device)
self.register_buffer('mel_basis', mel_basis)
self.register_buffer('hann_window', hann_window)
def linear_spectrogram(self, y):
assert (torch.min(y.data) >= -1)
assert (torch.max(y.data) <= 1)
y = torch.nn.functional.pad(y.unsqueeze(1),
(int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)),
mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window,
center=self.center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
spec = torch.norm(spec, p=2, dim=-1)
return spec
def mel_spectrogram(self, y):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert(torch.min(y.data) >= -1)
assert(torch.max(y.data) <= 1)
y = torch.nn.functional.pad(y.unsqueeze(1),
(int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)),
mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window,
center=self.center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(self.mel_basis, spec)
spec = self.spectral_normalize_torch(spec)
return spec
def spectral_normalize_torch(self, magnitudes):
output = self.dynamic_range_compression_torch(magnitudes)
return output
def dynamic_range_compression_torch(self, x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)