Spaces:
Running
Running
import sys,os | |
sys.path.append(os.path.dirname(os.path.abspath(__file__))) | |
import argparse | |
import torch | |
import torch.multiprocessing as mp | |
from omegaconf import OmegaConf | |
from vits_extend.train import train | |
torch.backends.cudnn.benchmark = True | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-c', '--config', type=str, required=True, | |
help="yaml file for configuration") | |
parser.add_argument('-p', '--checkpoint_path', type=str, default=None, | |
help="path of checkpoint pt file to resume training") | |
parser.add_argument('-n', '--name', type=str, required=True, | |
help="name of the model for logging, saving checkpoint") | |
args = parser.parse_args() | |
hp = OmegaConf.load(args.config) | |
with open(args.config, 'r') as f: | |
hp_str = ''.join(f.readlines()) | |
assert hp.data.hop_length == 320, \ | |
'hp.data.hop_length must be equal to 320, got %d' % hp.data.hop_length | |
args.num_gpus = 0 | |
torch.manual_seed(hp.train.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(hp.train.seed) | |
args.num_gpus = torch.cuda.device_count() | |
print('Batch size per GPU :', hp.train.batch_size) | |
if args.num_gpus > 1: | |
mp.spawn(train, nprocs=args.num_gpus, | |
args=(args, args.checkpoint_path, hp, hp_str,)) | |
else: | |
train(0, args, args.checkpoint_path, hp, hp_str) | |
else: | |
print('No GPU find!') | |