Spaces:
Running
Running
from pathlib import Path | |
from typing import cast | |
import numpy as np | |
from feature_retrieval import NumpyArray | |
from feature_retrieval.index import FaissIVFFlatTrainableFeatureIndexBuilder, logger | |
from feature_retrieval.transform import IFeatureMatrixTransform | |
def train_index( | |
features_path: Path, | |
index_save_filepath: Path, | |
index_builder: FaissIVFFlatTrainableFeatureIndexBuilder, | |
feature_transform: IFeatureMatrixTransform, | |
) -> None: | |
logger.info("start getting feature vectors from %s", features_path.absolute()) | |
feature_matrix = get_feature_matrix(features_path) | |
logger.debug("fetched %s features", feature_matrix.shape[0]) | |
logger.info("apply transform to feature matrix") | |
feature_matrix = feature_transform.transform(feature_matrix) | |
num_vectors, vector_dim = feature_matrix.shape | |
logger.debug("features transformed. Current features %s", num_vectors) | |
feature_index = index_builder.build(num_vectors=num_vectors, vector_dim=vector_dim) | |
logger.info("adding features to index with training") | |
feature_index.add_with_train(feature_matrix) | |
feature_index.save(index_save_filepath) | |
logger.info("index saved to %s", index_save_filepath.absolute()) | |
def get_feature_matrix(features_dir_path: Path) -> NumpyArray: | |
matrices = [np.load(str(features_path)) for features_path in features_dir_path.rglob("*.npy")] | |
feature_matrix = np.concatenate(matrices, axis=0) | |
return cast(NumpyArray, feature_matrix) | |