File size: 5,686 Bytes
9791162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import torch
from torch.nn import functional as F

###############################################################################
# Sequence filters
###############################################################################


def mean(signals, win_length=9):
    """Averave filtering for signals containing nan values



    Arguments

        signals (torch.tensor (shape=(batch, time)))

            The signals to filter

        win_length

            The size of the analysis window



    Returns

        filtered (torch.tensor (shape=(batch, time)))

    """

    assert signals.dim() == 2, "Input tensor must have 2 dimensions (batch_size, width)"
    signals = signals.unsqueeze(1)

    # Apply the mask by setting masked elements to zero, or make NaNs zero
    mask = ~torch.isnan(signals)
    masked_x = torch.where(mask, signals, torch.zeros_like(signals))

    # Create a ones kernel with the same number of channels as the input tensor
    ones_kernel = torch.ones(signals.size(1), 1, win_length, device=signals.device)

    # Perform sum pooling
    sum_pooled = F.conv1d(
        masked_x,
        ones_kernel,
        stride=1,
        padding=win_length // 2,
    )

    # Count the non-masked (valid) elements in each pooling window
    valid_count = F.conv1d(
        mask.float(),
        ones_kernel,
        stride=1,
        padding=win_length // 2,
    )
    valid_count = valid_count.clamp(min=1)  # Avoid division by zero

    # Perform masked average pooling
    avg_pooled = sum_pooled / valid_count

    # Fill zero values with NaNs
    avg_pooled[avg_pooled == 0] = float("nan")

    return avg_pooled.squeeze(1)


def median(signals, win_length):
    """Median filtering for signals containing nan values



    Arguments

        signals (torch.tensor (shape=(batch, time)))

            The signals to filter

        win_length

            The size of the analysis window



    Returns

        filtered (torch.tensor (shape=(batch, time)))

    """

    assert signals.dim() == 2, "Input tensor must have 2 dimensions (batch_size, width)"
    signals = signals.unsqueeze(1)

    mask = ~torch.isnan(signals)
    masked_x = torch.where(mask, signals, torch.zeros_like(signals))
    padding = win_length // 2

    x = F.pad(masked_x, (padding, padding), mode="reflect")
    mask = F.pad(mask.float(), (padding, padding), mode="constant", value=0)

    x = x.unfold(2, win_length, 1)
    mask = mask.unfold(2, win_length, 1)

    x = x.contiguous().view(x.size()[:3] + (-1,))
    mask = mask.contiguous().view(mask.size()[:3] + (-1,))

    # Combine the mask with the input tensor
    x_masked = torch.where(mask.bool(), x.double(), float("inf")).to(x)

    # Sort the masked tensor along the last dimension
    x_sorted, _ = torch.sort(x_masked, dim=-1)

    # Compute the count of non-masked (valid) values
    valid_count = mask.sum(dim=-1)

    # Calculate the index of the median value for each pooling window
    median_idx = ((valid_count - 1) // 2).clamp(min=0)

    # Gather the median values using the calculated indices
    median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1)

    # Fill infinite values with NaNs
    median_pooled[torch.isinf(median_pooled)] = float("nan")

    return median_pooled.squeeze(1)


###############################################################################
# Utilities
###############################################################################


def nanfilter(signals, win_length, filter_fn):
    """Filters a sequence, ignoring nan values



    Arguments

        signals (torch.tensor (shape=(batch, time)))

            The signals to filter

        win_length

            The size of the analysis window

        filter_fn (function)

            The function to use for filtering



    Returns

        filtered (torch.tensor (shape=(batch, time)))

    """
    # Output buffer
    filtered = torch.empty_like(signals)

    # Loop over frames
    for i in range(signals.size(1)):

        # Get analysis window bounds
        start = max(0, i - win_length // 2)
        end = min(signals.size(1), i + win_length // 2 + 1)

        # Apply filter to window
        filtered[:, i] = filter_fn(signals[:, start:end])

    return filtered


def nanmean(signals):
    """Computes the mean, ignoring nans



    Arguments

        signals (torch.tensor [shape=(batch, time)])

            The signals to filter



    Returns

        filtered (torch.tensor [shape=(batch, time)])

    """
    signals = signals.clone()

    # Find nans
    nans = torch.isnan(signals)

    # Set nans to 0.
    signals[nans] = 0.

    # Compute average
    return signals.sum(dim=1) / (~nans).float().sum(dim=1)


def nanmedian(signals):
    """Computes the median, ignoring nans



    Arguments

        signals (torch.tensor [shape=(batch, time)])

            The signals to filter



    Returns

        filtered (torch.tensor [shape=(batch, time)])

    """
    # Find nans
    nans = torch.isnan(signals)

    # Compute median for each slice
    medians = [nanmedian1d(signal[~nan]) for signal, nan in zip(signals, nans)]

    # Stack results
    return torch.tensor(medians, dtype=signals.dtype, device=signals.device)


def nanmedian1d(signal):
    """Computes the median. If signal is empty, returns torch.nan



    Arguments

        signal (torch.tensor [shape=(time,)])



    Returns

        median (torch.tensor [shape=(1,)])

    """
    return torch.median(signal) if signal.numel() else np.nan