File size: 1,912 Bytes
9791162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import librosa

from .plotting import plot_waveform_to_numpy, plot_spectrogram_to_numpy

class MyWriter(SummaryWriter):
    def __init__(self, hp, logdir):
        super(MyWriter, self).__init__(logdir)
        self.sample_rate = hp.data.sampling_rate

    def log_training(self, g_loss, d_loss, mel_loss, stft_loss, k_loss, r_loss, score_loss, step):
        self.add_scalar('train/g_loss', g_loss, step)
        self.add_scalar('train/d_loss', d_loss, step)
        
        self.add_scalar('train/score_loss', score_loss, step)
        self.add_scalar('train/stft_loss', stft_loss, step)
        self.add_scalar('train/mel_loss', mel_loss, step)
        self.add_scalar('train/kl_f_loss', k_loss, step)
        self.add_scalar('train/kl_r_loss', r_loss, step)

    def log_validation(self, mel_loss, generator, discriminator, step):
        self.add_scalar('validation/mel_loss', mel_loss, step)

    def log_fig_audio(self, real, fake, spec_fake, spec_real, idx, step):
        if idx == 0:
            spec_fake = librosa.amplitude_to_db(spec_fake, ref=np.max,top_db=80.)
            spec_real = librosa.amplitude_to_db(spec_real, ref=np.max,top_db=80.)
            self.add_image(f'spec_fake/{step}', plot_spectrogram_to_numpy(spec_fake), step)
            self.add_image(f'wave_fake/{step}', plot_waveform_to_numpy(fake), step)
            self.add_image(f'spec_real/{step}', plot_spectrogram_to_numpy(spec_real), step)
            self.add_image(f'wave_real/{step}', plot_waveform_to_numpy(real), step)

            self.add_audio(f'fake/{step}', fake, step, self.sample_rate)
            self.add_audio(f'real/{step}', real, step, self.sample_rate)

    def log_histogram(self, model, step):
        for tag, value in model.named_parameters():
            self.add_histogram(tag.replace('.', '/'), value.cpu().detach().numpy(), step)