File size: 12,956 Bytes
9791162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import time
import logging
import math
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel

from vits_extend.dataloader import create_dataloader_train
from vits_extend.dataloader import create_dataloader_eval
from vits_extend.writer import MyWriter
from vits_extend.stft import TacotronSTFT
from vits_extend.stft_loss import MultiResolutionSTFTLoss
from vits_extend.validation import validate
from vits_decoder.discriminator import Discriminator
from vits.models import SynthesizerTrn
from vits import commons
from vits.losses import kl_loss
from vits.commons import clip_grad_value_


def load_part(model, saved_state_dict):
    if hasattr(model, 'module'):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        if k.startswith('TODO'):
            new_state_dict[k] = v
        else:
            new_state_dict[k] = saved_state_dict[k]
    if hasattr(model, 'module'):
        model.module.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(new_state_dict)
    return model


def load_model(model, saved_state_dict):
    if hasattr(model, 'module'):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            new_state_dict[k] = saved_state_dict[k]
        except:
            print("%s is not in the checkpoint" % k)
            new_state_dict[k] = v
    if hasattr(model, 'module'):
        model.module.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(new_state_dict)
    return model


def train(rank, args, chkpt_path, hp, hp_str):

    if args.num_gpus > 1:
        init_process_group(backend=hp.dist_config.dist_backend, init_method=hp.dist_config.dist_url,
                           world_size=hp.dist_config.world_size * args.num_gpus, rank=rank)

    torch.cuda.manual_seed(hp.train.seed)
    device = torch.device('cuda:{:d}'.format(rank))

    model_g = SynthesizerTrn(
        hp.data.filter_length // 2 + 1,
        hp.data.segment_size // hp.data.hop_length,
        hp).to(device)
    model_d = Discriminator(hp).to(device)

    optim_g = torch.optim.AdamW(model_g.parameters(),
                                lr=hp.train.learning_rate, betas=hp.train.betas, eps=hp.train.eps)
    optim_d = torch.optim.AdamW(model_d.parameters(),
                                lr=(hp.train.learning_rate / hp.train.accum_step), betas=hp.train.betas, eps=hp.train.eps)

    init_epoch = 1
    step = 0

    stft = TacotronSTFT(filter_length=hp.data.filter_length,
                        hop_length=hp.data.hop_length,
                        win_length=hp.data.win_length,
                        n_mel_channels=hp.data.mel_channels,
                        sampling_rate=hp.data.sampling_rate,
                        mel_fmin=hp.data.mel_fmin,
                        mel_fmax=hp.data.mel_fmax,
                        center=False,
                        device=device)
    # define logger, writer, valloader, stft at rank_zero
    if rank == 0:
        pth_dir = os.path.join(hp.log.pth_dir, args.name)
        log_dir = os.path.join(hp.log.log_dir, args.name)
        os.makedirs(pth_dir, exist_ok=True)
        os.makedirs(log_dir, exist_ok=True)

        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s',
            handlers=[
                logging.FileHandler(os.path.join(log_dir, '%s-%d.log' % (args.name, time.time()))),
                logging.StreamHandler()
            ]
        )
        logger = logging.getLogger()
        writer = MyWriter(hp, log_dir)
        valloader = create_dataloader_eval(hp)

    if os.path.isfile(hp.train.pretrain):
        if rank == 0:
            logger.info("Start from 32k pretrain model: %s" % hp.train.pretrain)
        checkpoint = torch.load(hp.train.pretrain, map_location='cpu')
        load_model(model_g, checkpoint['model_g'])
        load_model(model_d, checkpoint['model_d'])

    if chkpt_path is not None:
        if rank == 0:
            logger.info("Resuming from checkpoint: %s" % chkpt_path)
        checkpoint = torch.load(chkpt_path, map_location='cpu')
        load_model(model_g, checkpoint['model_g'])
        load_model(model_d, checkpoint['model_d'])
        optim_g.load_state_dict(checkpoint['optim_g'])
        optim_d.load_state_dict(checkpoint['optim_d'])
        init_epoch = checkpoint['epoch']
        step = checkpoint['step']

        if rank == 0:
            if hp_str != checkpoint['hp_str']:
                logger.warning("New hparams is different from checkpoint. Will use new.")
    else:
        if rank == 0:
            logger.info("Starting new training run.")

    if args.num_gpus > 1:
        model_g = DistributedDataParallel(model_g, device_ids=[rank])
        model_d = DistributedDataParallel(model_d, device_ids=[rank])

    # this accelerates training when the size of minibatch is always consistent.
    # if not consistent, it'll horribly slow down.
    torch.backends.cudnn.benchmark = True

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hp.train.lr_decay, last_epoch=init_epoch-2)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hp.train.lr_decay, last_epoch=init_epoch-2)

    stft_criterion = MultiResolutionSTFTLoss(device, eval(hp.mrd.resolutions))
    spkc_criterion = nn.CosineEmbeddingLoss()

    trainloader = create_dataloader_train(hp, args.num_gpus, rank)

    for epoch in range(init_epoch, hp.train.epochs):

        trainloader.batch_sampler.set_epoch(epoch)

        if rank == 0 and epoch % hp.log.eval_interval == 0:
            with torch.no_grad():
                validate(hp, args, model_g, model_d, valloader, stft, writer, step, device)

        if rank == 0:
            loader = tqdm.tqdm(trainloader, desc='Loading train data')
        else:
            loader = trainloader

        model_g.train()
        model_d.train()

        for ppg, ppg_l, vec, pit, spk, spec, spec_l, audio, audio_l in loader:

            ppg = ppg.to(device)
            vec = vec.to(device)
            pit = pit.to(device)
            spk = spk.to(device)
            spec = spec.to(device)
            audio = audio.to(device)
            ppg_l = ppg_l.to(device)
            spec_l = spec_l.to(device)
            audio_l = audio_l.to(device)

            # generator
            fake_audio, ids_slice, z_mask, \
                (z_f, z_r, z_p, m_p, logs_p, z_q, m_q, logs_q, logdet_f, logdet_r), spk_preds = model_g(
                    ppg, vec, pit, spec, spk, ppg_l, spec_l)

            audio = commons.slice_segments(
                audio, ids_slice * hp.data.hop_length, hp.data.segment_size)  # slice
            # Spk Loss
            spk_loss = spkc_criterion(spk, spk_preds, torch.Tensor(spk_preds.size(0))
                                .to(device).fill_(1.0))
            # Mel Loss
            mel_fake = stft.mel_spectrogram(fake_audio.squeeze(1))
            mel_real = stft.mel_spectrogram(audio.squeeze(1))
            mel_loss = F.l1_loss(mel_fake, mel_real) * hp.train.c_mel

            # Multi-Resolution STFT Loss
            sc_loss, mag_loss = stft_criterion(fake_audio.squeeze(1), audio.squeeze(1))
            stft_loss = (sc_loss + mag_loss) * hp.train.c_stft

            # Generator Loss
            disc_fake = model_d(fake_audio)
            score_loss = 0.0
            for (_, score_fake) in disc_fake:
                score_loss += torch.mean(torch.pow(score_fake - 1.0, 2))
            score_loss = score_loss / len(disc_fake)

            # Feature Loss
            disc_real = model_d(audio)
            feat_loss = 0.0
            for (feat_fake, _), (feat_real, _) in zip(disc_fake, disc_real):
                for fake, real in zip(feat_fake, feat_real):
                    feat_loss += torch.mean(torch.abs(fake - real))
            feat_loss = feat_loss / len(disc_fake)
            feat_loss = feat_loss * 2

            # Kl Loss
            loss_kl_f = kl_loss(z_f, logs_q, m_p, logs_p, logdet_f, z_mask) * hp.train.c_kl
            loss_kl_r = kl_loss(z_r, logs_p, m_q, logs_q, logdet_r, z_mask) * hp.train.c_kl

            # Loss
            loss_g = score_loss + feat_loss + mel_loss + stft_loss + loss_kl_f + loss_kl_r * 0.5 + spk_loss * 2
            loss_g.backward()

            if ((step + 1) % hp.train.accum_step == 0) or (step + 1 == len(loader)):
                # accumulate gradients for accum steps
                for param in model_g.parameters():
                    param.grad /= hp.train.accum_step
                clip_grad_value_(model_g.parameters(),  None)
                # update model
                optim_g.step()
                optim_g.zero_grad()

            # discriminator
            optim_d.zero_grad()
            disc_fake = model_d(fake_audio.detach())
            disc_real = model_d(audio)

            loss_d = 0.0
            for (_, score_fake), (_, score_real) in zip(disc_fake, disc_real):
                loss_d += torch.mean(torch.pow(score_real - 1.0, 2))
                loss_d += torch.mean(torch.pow(score_fake, 2))
            loss_d = loss_d / len(disc_fake)

            loss_d.backward()
            clip_grad_value_(model_d.parameters(),  None)
            optim_d.step()

            step += 1
            # logging
            loss_g = loss_g.item()
            loss_d = loss_d.item()
            loss_s = stft_loss.item()
            loss_m = mel_loss.item()
            loss_k = loss_kl_f.item()
            loss_r = loss_kl_r.item()
            loss_i = spk_loss.item()

            if rank == 0 and step % hp.log.info_interval == 0:
                writer.log_training(
                    loss_g, loss_d, loss_m, loss_s, loss_k, loss_r, score_loss.item(), step)
                logger.info("epoch %d | g %.04f m %.04f s %.04f d %.04f k %.04f r %.04f i %.04f | step %d" % (
                    epoch, loss_g, loss_m, loss_s, loss_d, loss_k, loss_r, loss_i, step))

        if rank == 0 and epoch % hp.log.save_interval == 0:
            save_path = os.path.join(pth_dir, '%s_%04d.pt'
                                     % (args.name, epoch))
            torch.save({
                'model_g': (model_g.module if args.num_gpus > 1 else model_g).state_dict(),
                'model_d': (model_d.module if args.num_gpus > 1 else model_d).state_dict(),
                'optim_g': optim_g.state_dict(),
                'optim_d': optim_d.state_dict(),
                'step': step,
                'epoch': epoch,
                'hp_str': hp_str,
            }, save_path)
            logger.info("Saved checkpoint to: %s" % save_path)

        if rank == 0:
            def clean_checkpoints(path_to_models=f'{pth_dir}', n_ckpts_to_keep=hp.log.keep_ckpts, sort_by_time=True):
                """Freeing up space by deleting saved ckpts
                Arguments:
                path_to_models    --  Path to the model directory
                n_ckpts_to_keep   --  Number of ckpts to keep, excluding sovits5.0_0.pth
                                      If n_ckpts_to_keep == 0, do not delete any ckpts
                sort_by_time      --  True -> chronologically delete ckpts
                                      False -> lexicographically delete ckpts
                """
                assert isinstance(n_ckpts_to_keep, int) and n_ckpts_to_keep >= 0
                ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
                name_key = (lambda _f: int(re.compile(f'{args.name}_(\d+)\.pt').match(_f).group(1)))
                time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
                sort_key = time_key if sort_by_time else name_key
                x_sorted = lambda _x: sorted(
                    [f for f in ckpts_files if f.startswith(_x) and not f.endswith('sovits5.0_0.pth')], key=sort_key)
                if n_ckpts_to_keep == 0:
                    to_del = []
                else:
                    to_del = [os.path.join(path_to_models, fn) for fn in x_sorted(f'{args.name}')[:-n_ckpts_to_keep]]
                del_info = lambda fn: logger.info(f"Free up space by deleting ckpt {fn}")
                del_routine = lambda x: [os.remove(x), del_info(x)]
                rs = [del_routine(fn) for fn in to_del]

            clean_checkpoints()

            os.makedirs(f'{pth_dir}', exist_ok=True)
            keep_ckpts = getattr(hp.log, 'keep_ckpts', 0)
            if keep_ckpts > 0:
                clean_checkpoints(path_to_models=f'{pth_dir}', n_ckpts_to_keep=hp.log.keep_ckpts, sort_by_time=True)

        scheduler_g.step()
        scheduler_d.step()