Spaces:
Running
Running
File size: 12,956 Bytes
9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import time
import logging
import math
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from vits_extend.dataloader import create_dataloader_train
from vits_extend.dataloader import create_dataloader_eval
from vits_extend.writer import MyWriter
from vits_extend.stft import TacotronSTFT
from vits_extend.stft_loss import MultiResolutionSTFTLoss
from vits_extend.validation import validate
from vits_decoder.discriminator import Discriminator
from vits.models import SynthesizerTrn
from vits import commons
from vits.losses import kl_loss
from vits.commons import clip_grad_value_
def load_part(model, saved_state_dict):
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('TODO'):
new_state_dict[k] = v
else:
new_state_dict[k] = saved_state_dict[k]
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
return model
def load_model(model, saved_state_dict):
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
print("%s is not in the checkpoint" % k)
new_state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict)
else:
model.load_state_dict(new_state_dict)
return model
def train(rank, args, chkpt_path, hp, hp_str):
if args.num_gpus > 1:
init_process_group(backend=hp.dist_config.dist_backend, init_method=hp.dist_config.dist_url,
world_size=hp.dist_config.world_size * args.num_gpus, rank=rank)
torch.cuda.manual_seed(hp.train.seed)
device = torch.device('cuda:{:d}'.format(rank))
model_g = SynthesizerTrn(
hp.data.filter_length // 2 + 1,
hp.data.segment_size // hp.data.hop_length,
hp).to(device)
model_d = Discriminator(hp).to(device)
optim_g = torch.optim.AdamW(model_g.parameters(),
lr=hp.train.learning_rate, betas=hp.train.betas, eps=hp.train.eps)
optim_d = torch.optim.AdamW(model_d.parameters(),
lr=(hp.train.learning_rate / hp.train.accum_step), betas=hp.train.betas, eps=hp.train.eps)
init_epoch = 1
step = 0
stft = TacotronSTFT(filter_length=hp.data.filter_length,
hop_length=hp.data.hop_length,
win_length=hp.data.win_length,
n_mel_channels=hp.data.mel_channels,
sampling_rate=hp.data.sampling_rate,
mel_fmin=hp.data.mel_fmin,
mel_fmax=hp.data.mel_fmax,
center=False,
device=device)
# define logger, writer, valloader, stft at rank_zero
if rank == 0:
pth_dir = os.path.join(hp.log.pth_dir, args.name)
log_dir = os.path.join(hp.log.log_dir, args.name)
os.makedirs(pth_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(log_dir, '%s-%d.log' % (args.name, time.time()))),
logging.StreamHandler()
]
)
logger = logging.getLogger()
writer = MyWriter(hp, log_dir)
valloader = create_dataloader_eval(hp)
if os.path.isfile(hp.train.pretrain):
if rank == 0:
logger.info("Start from 32k pretrain model: %s" % hp.train.pretrain)
checkpoint = torch.load(hp.train.pretrain, map_location='cpu')
load_model(model_g, checkpoint['model_g'])
load_model(model_d, checkpoint['model_d'])
if chkpt_path is not None:
if rank == 0:
logger.info("Resuming from checkpoint: %s" % chkpt_path)
checkpoint = torch.load(chkpt_path, map_location='cpu')
load_model(model_g, checkpoint['model_g'])
load_model(model_d, checkpoint['model_d'])
optim_g.load_state_dict(checkpoint['optim_g'])
optim_d.load_state_dict(checkpoint['optim_d'])
init_epoch = checkpoint['epoch']
step = checkpoint['step']
if rank == 0:
if hp_str != checkpoint['hp_str']:
logger.warning("New hparams is different from checkpoint. Will use new.")
else:
if rank == 0:
logger.info("Starting new training run.")
if args.num_gpus > 1:
model_g = DistributedDataParallel(model_g, device_ids=[rank])
model_d = DistributedDataParallel(model_d, device_ids=[rank])
# this accelerates training when the size of minibatch is always consistent.
# if not consistent, it'll horribly slow down.
torch.backends.cudnn.benchmark = True
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hp.train.lr_decay, last_epoch=init_epoch-2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hp.train.lr_decay, last_epoch=init_epoch-2)
stft_criterion = MultiResolutionSTFTLoss(device, eval(hp.mrd.resolutions))
spkc_criterion = nn.CosineEmbeddingLoss()
trainloader = create_dataloader_train(hp, args.num_gpus, rank)
for epoch in range(init_epoch, hp.train.epochs):
trainloader.batch_sampler.set_epoch(epoch)
if rank == 0 and epoch % hp.log.eval_interval == 0:
with torch.no_grad():
validate(hp, args, model_g, model_d, valloader, stft, writer, step, device)
if rank == 0:
loader = tqdm.tqdm(trainloader, desc='Loading train data')
else:
loader = trainloader
model_g.train()
model_d.train()
for ppg, ppg_l, vec, pit, spk, spec, spec_l, audio, audio_l in loader:
ppg = ppg.to(device)
vec = vec.to(device)
pit = pit.to(device)
spk = spk.to(device)
spec = spec.to(device)
audio = audio.to(device)
ppg_l = ppg_l.to(device)
spec_l = spec_l.to(device)
audio_l = audio_l.to(device)
# generator
fake_audio, ids_slice, z_mask, \
(z_f, z_r, z_p, m_p, logs_p, z_q, m_q, logs_q, logdet_f, logdet_r), spk_preds = model_g(
ppg, vec, pit, spec, spk, ppg_l, spec_l)
audio = commons.slice_segments(
audio, ids_slice * hp.data.hop_length, hp.data.segment_size) # slice
# Spk Loss
spk_loss = spkc_criterion(spk, spk_preds, torch.Tensor(spk_preds.size(0))
.to(device).fill_(1.0))
# Mel Loss
mel_fake = stft.mel_spectrogram(fake_audio.squeeze(1))
mel_real = stft.mel_spectrogram(audio.squeeze(1))
mel_loss = F.l1_loss(mel_fake, mel_real) * hp.train.c_mel
# Multi-Resolution STFT Loss
sc_loss, mag_loss = stft_criterion(fake_audio.squeeze(1), audio.squeeze(1))
stft_loss = (sc_loss + mag_loss) * hp.train.c_stft
# Generator Loss
disc_fake = model_d(fake_audio)
score_loss = 0.0
for (_, score_fake) in disc_fake:
score_loss += torch.mean(torch.pow(score_fake - 1.0, 2))
score_loss = score_loss / len(disc_fake)
# Feature Loss
disc_real = model_d(audio)
feat_loss = 0.0
for (feat_fake, _), (feat_real, _) in zip(disc_fake, disc_real):
for fake, real in zip(feat_fake, feat_real):
feat_loss += torch.mean(torch.abs(fake - real))
feat_loss = feat_loss / len(disc_fake)
feat_loss = feat_loss * 2
# Kl Loss
loss_kl_f = kl_loss(z_f, logs_q, m_p, logs_p, logdet_f, z_mask) * hp.train.c_kl
loss_kl_r = kl_loss(z_r, logs_p, m_q, logs_q, logdet_r, z_mask) * hp.train.c_kl
# Loss
loss_g = score_loss + feat_loss + mel_loss + stft_loss + loss_kl_f + loss_kl_r * 0.5 + spk_loss * 2
loss_g.backward()
if ((step + 1) % hp.train.accum_step == 0) or (step + 1 == len(loader)):
# accumulate gradients for accum steps
for param in model_g.parameters():
param.grad /= hp.train.accum_step
clip_grad_value_(model_g.parameters(), None)
# update model
optim_g.step()
optim_g.zero_grad()
# discriminator
optim_d.zero_grad()
disc_fake = model_d(fake_audio.detach())
disc_real = model_d(audio)
loss_d = 0.0
for (_, score_fake), (_, score_real) in zip(disc_fake, disc_real):
loss_d += torch.mean(torch.pow(score_real - 1.0, 2))
loss_d += torch.mean(torch.pow(score_fake, 2))
loss_d = loss_d / len(disc_fake)
loss_d.backward()
clip_grad_value_(model_d.parameters(), None)
optim_d.step()
step += 1
# logging
loss_g = loss_g.item()
loss_d = loss_d.item()
loss_s = stft_loss.item()
loss_m = mel_loss.item()
loss_k = loss_kl_f.item()
loss_r = loss_kl_r.item()
loss_i = spk_loss.item()
if rank == 0 and step % hp.log.info_interval == 0:
writer.log_training(
loss_g, loss_d, loss_m, loss_s, loss_k, loss_r, score_loss.item(), step)
logger.info("epoch %d | g %.04f m %.04f s %.04f d %.04f k %.04f r %.04f i %.04f | step %d" % (
epoch, loss_g, loss_m, loss_s, loss_d, loss_k, loss_r, loss_i, step))
if rank == 0 and epoch % hp.log.save_interval == 0:
save_path = os.path.join(pth_dir, '%s_%04d.pt'
% (args.name, epoch))
torch.save({
'model_g': (model_g.module if args.num_gpus > 1 else model_g).state_dict(),
'model_d': (model_d.module if args.num_gpus > 1 else model_d).state_dict(),
'optim_g': optim_g.state_dict(),
'optim_d': optim_d.state_dict(),
'step': step,
'epoch': epoch,
'hp_str': hp_str,
}, save_path)
logger.info("Saved checkpoint to: %s" % save_path)
if rank == 0:
def clean_checkpoints(path_to_models=f'{pth_dir}', n_ckpts_to_keep=hp.log.keep_ckpts, sort_by_time=True):
"""Freeing up space by deleting saved ckpts
Arguments:
path_to_models -- Path to the model directory
n_ckpts_to_keep -- Number of ckpts to keep, excluding sovits5.0_0.pth
If n_ckpts_to_keep == 0, do not delete any ckpts
sort_by_time -- True -> chronologically delete ckpts
False -> lexicographically delete ckpts
"""
assert isinstance(n_ckpts_to_keep, int) and n_ckpts_to_keep >= 0
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
name_key = (lambda _f: int(re.compile(f'{args.name}_(\d+)\.pt').match(_f).group(1)))
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
sort_key = time_key if sort_by_time else name_key
x_sorted = lambda _x: sorted(
[f for f in ckpts_files if f.startswith(_x) and not f.endswith('sovits5.0_0.pth')], key=sort_key)
if n_ckpts_to_keep == 0:
to_del = []
else:
to_del = [os.path.join(path_to_models, fn) for fn in x_sorted(f'{args.name}')[:-n_ckpts_to_keep]]
del_info = lambda fn: logger.info(f"Free up space by deleting ckpt {fn}")
del_routine = lambda x: [os.remove(x), del_info(x)]
rs = [del_routine(fn) for fn in to_del]
clean_checkpoints()
os.makedirs(f'{pth_dir}', exist_ok=True)
keep_ckpts = getattr(hp.log, 'keep_ckpts', 0)
if keep_ckpts > 0:
clean_checkpoints(path_to_models=f'{pth_dir}', n_ckpts_to_keep=hp.log.keep_ckpts, sort_by_time=True)
scheduler_g.step()
scheduler_d.step()
|