File size: 7,715 Bytes
9791162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
| Description: libf0 YIN implementation
| Contributors: Sebastian Rosenzweig, Simon Schwär, Edgar Suárez, Meinard Müller
| License: The MIT license, https://opensource.org/licenses/MIT
| This file is part of libf0.
"""
import numpy as np
from numba import njit


def yin(x, Fs=22050, N=2048, H=256, F_min=55.0, F_max=1760.0, threshold=0.15, verbose=False):
    """
    Implementation of the YIN algorithm.

    .. [#] Alain De Cheveigné and Hideki Kawahara.
        "YIN, a fundamental frequency estimator for speech and music."
        The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.

    Parameters
    ----------
    x : ndarray [shape=(L, )], real - valued
        Audio signal
    Fs : int
        Sampling frequency
    N : int
        Window size
    H : int
        Hop size
    F_min : float
        Minimal frequency
    F_max : float
        Maximal frequency
    threshold : float
        Threshold for cumulative mean normalized difference function
    verbose : bool
        Switch to activate/deactivate status bar

    Returns
    -------
    f0 : ndarray
        Estimated F0-trajectory
    t : ndarray
        Time axis
    ap: ndarray
        Aperiodicity (indicator for voicing: the lower, the more reliable the estimate)
    """

    if F_min > F_max:
        raise Exception("F_min must be smaller than F_max!")

    if F_min < Fs/N:        
        raise Exception(f"The condition (F_min >= Fs/N) was not met. With Fs = {Fs}, N = {N} and F_min = {F_min} you have the following options: \n1) Set F_min >= {np.ceil(Fs/N)} Hz. \n2) Set N >= {np.ceil(Fs/F_min).astype(int)}. \n3) Set Fs <= {np.floor(F_min * N)} Hz.")

    x_pad = np.concatenate((np.zeros(N//2), x, np.zeros(N//2)))  # Add zeros for centered estimates
    M = int(np.floor((len(x_pad) - N) / H)) + 1  # Compute number of estimates that will be generated
    f0 = np.zeros(M)  # Estimated fundamental frequencies (0 for unspecified frames)
    t = np.arange(M)*H/Fs  # Time axis
    ap = np.zeros(M)  # Aperiodicity

    lag_min = max(int(np.ceil(Fs / F_max)), 1)  # lag of maximal frequency in samples
    lag_max = int(np.ceil(Fs / F_min))  # lag of minimal frequency in samples

    for m in range(M):
        if verbose:
            print(f"YIN Progress: {np.ceil(100*m/M).astype(int)}%", end='\r')
        # Take a frame from input signal
        frame = x_pad[m*H:m*H + N]

        # Cumulative Mean Normalized Difference Function
        cmndf = cumulative_mean_normalized_difference_function(frame, lag_max)

        # Absolute Thresholding
        lag_est = absolute_thresholding(cmndf, threshold, lag_min, lag_max, parabolic_interp=True)

        # Refine estimate by constraining search to vicinity of best local estimate (default: +/- 25 cents)
        tol_cents = 25
        lag_min_local = int(np.round(Fs / ((Fs / lag_est) * 2 ** (tol_cents/1200))))
        if lag_min_local < lag_min:
            lag_min_local = lag_min
        lag_max_local = int(np.round(Fs / ((Fs / lag_est) * 2 ** (-tol_cents/1200))))
        if lag_max_local > lag_max:
            lag_max_local = lag_max
        lag_new = absolute_thresholding(cmndf, threshold=np.inf, lag_min=lag_min_local, lag_max=lag_max_local,
                                        parabolic_interp=True)

        # Compute Fundamental Frequency Estimate
        f0[m] = Fs / lag_new

        # Compute Aperiodicity
        ap[m] = aperiodicity(frame, lag_new)

    return f0, t, ap


@njit
def cumulative_mean_normalized_difference_function(frame, lag_max):
    """
    Computes Cumulative Mean Normalized Difference Function (CMNDF).

    Parameters
    ----------
    frame : ndarray
        Audio frame
    lag_max : int
        Maximum expected lag in the CMNDF

    Returns
    -------
    cmndf : ndarray
        Cumulative Mean Normalized Difference Function
    """

    cmndf = np.zeros(lag_max+1)  # Initialize CMNDF
    cmndf[0] = 1
    diff_mean = 0

    for tau in range(1, lag_max+1):
        # Difference function
        diff = np.sum((frame[0:-tau] - frame[0 + tau:]) ** 2)
        # Iterative mean of the difference function
        diff_mean = diff_mean*(tau-1)/tau + diff/tau

        cmndf[tau] = diff / (diff_mean + np.finfo(np.float64).eps)

    return cmndf


def absolute_thresholding(cmndf, threshold, lag_min, lag_max, parabolic_interp=True):
    """
    Absolute thresholding:
    Set an absolute threshold and choose the smallest value of tau that gives a minimum of d' deeper than that
    threshold. If none is found, the global minimum is chosen instead.

    Parameters
    ----------
    cmndf : ndarray
        Cumulative Mean Normalized Difference Function
    threshold : float
        Threshold
    lag_min : float
        Minimal lag
    lag_max : float
        Maximal lag
    parabolic_interp : bool
        Switch to activate/deactivate parabolic interpolation

    Returns
    -------

    """

    # take shortcut if search range only allows for one possible lag
    if lag_min == lag_max:
        return lag_min

    # find local minima below absolute threshold in interval [lag_min:lag_max]
    local_min_idxs = (np.argwhere((cmndf[1:-1] < cmndf[0:-2]) & (cmndf[1:-1] < cmndf[2:]))).flatten() + 1
    below_thr_idxs = np.argwhere(cmndf[lag_min:lag_max] < threshold).flatten() + lag_min
    # numba compatible intersection of indices sets
    min_idxs = np.unique(np.array([i for i in local_min_idxs for j in below_thr_idxs if i == j]))

    # if no local minima below threshold are found, return global minimum
    if not min_idxs.size:
        return np.argmin(cmndf[lag_min:lag_max]) + lag_min

    # find first local minimum
    lag = np.min(min_idxs)  # choose first local minimum

    # Optional: Parabolic Interpolation of local minima
    if parabolic_interp:
        lag_corr, cmndf[lag] = parabolic_interpolation(cmndf[lag-1], cmndf[lag], cmndf[lag+1])
        lag += lag_corr

    return lag


@njit
def parabolic_interpolation(y1, y2, y3):
    """
    Parabolic interpolation of an extremal value given three samples with equal spacing on the x-axis.
    The middle value y2 is assumed to be the extremal sample of the three.

    Parameters
    ----------
    y1: f(x1)
    y2: f(x2)
    y3: f(x3)

    Returns
    -------
    x_interp: Interpolated x-value (relative to x3-x2)
    y_interp: Interpolated y-value, f(x_interp)
    """

    a = np.finfo(np.float64).eps + (y1 + y3 - 2 * y2) / 2
    b = (y3 - y1) / 2
    x_interp = -b / (2 * a)
    y_interp = y2 - (b ** 2) / (4 * a)

    return x_interp, y_interp


def aperiodicity(frame, lag_est):
    """
    Compute aperiodicity of given frame (serves as indicator for reliability or voicing detection).

    Parameters
    ----------
    frame : ndarray
        Frame
    lag_est : float
        Estimated lag

    Returns
    -------
    ap: float
        Aperiodicity (the lower, the more reliable the estimate)
    """

    lag_int = int(np.floor(lag_est))  # uncorrected period estimate
    frac = lag_est - lag_int  # residual

    # Pad frame to insure constant size
    frame_pad = np.concatenate((frame, np.flip(frame)))  # mirror padding

    # Shift frame by estimated period
    if frac == 0:
        frame_shift = frame_pad[lag_int:lag_int+len(frame)]
    else:
        # linear interpolation between adjacent shifts
        frame_shift = (1 - frac) * frame_pad[lag_int:lag_int+len(frame)] + \
                      frac * frame_pad[lag_int+1:lag_int+1+len(frame)]

    pwr = (np.mean(frame ** 2) + np.mean(frame_shift ** 2)) / 2  # average power over fixed and shifted frame
    res = np.mean((frame - frame_shift) ** 2) / 2  # residual power
    ap = res / (pwr + np.finfo(np.float64).eps)

    return ap