Spaces:
Running
Running
File size: 9,686 Bytes
9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
"""
| Description: libf0 SWIPE implementation
| Contributors: Sebastian Rosenzweig, Vojtěch Pešek, Simon Schwär, Meinard Müller
| License: The MIT license, https://opensource.org/licenses/MIT
| This file is part of libf0.
"""
from scipy import interpolate
import numpy as np
import librosa
def swipe(x, Fs=22050, H=256, F_min=55.0, F_max=1760.0, dlog2p=1 / 96, derbs=0.1, strength_threshold=0):
"""
Implementation of a sawtooth waveform inspired pitch estimator (SWIPE).
This version of the algorithm follows the original implementation, see `swipe_slim` for a more efficient
alternative.
.. [#] Arturo Camacho and John G. Harris,
"A sawtooth waveform inspired pitch estimator for speech and music."
The Journal of the Acoustical Society of America, vol. 124, no. 3, pp. 1638–1652, Sep. 2008
Parameters
----------
x : ndarray
Audio signal
Fs : int
Sampling rate
H : int
Hop size
F_min : float or int
Minimal frequency
F_max : float or int
Maximal frequency
dlog2p : float
resolution of the pitch candidate bins in octaves (default value = 1/96 -> 96 bins per octave)
derbs : float
resolution of the ERB bands (default value = 0.1)
strength_threshold : float
confidence threshold [0, 1] for the pitch detection (default value = 0)
Returns
-------
f0 : ndarray
Estimated F0-trajectory
t : ndarray
Time axis
strength : ndarray
Confidence/Pitch Strength
"""
t = np.arange(0, len(x), H) / Fs # Times
# Compute pitch candidates
pc = 2 ** np.arange(np.log2(F_min), np.log2(F_max), dlog2p)
# Pitch strength matrix
S = np.zeros((len(pc), len(t)))
# Determine P2-WSs [max, min]
log_ws_max = np.ceil(np.log2((8 / F_min) * Fs))
log_ws_min = np.floor(np.log2((8 / F_max) * Fs))
# P2-WSs - window sizes in samples
ws = 2 ** np.arange(log_ws_max, log_ws_min - 1, -1, dtype=np.int32)
# print(f'window sizes in samples: {ws}')
# Determine window sizes used by each pitch candidate
log2pc = np.arange(np.log2(F_min), np.log2(F_max), dlog2p)
d = log2pc - np.log2(np.divide(8 * Fs, ws[0]))
# Create ERBs spaced frequencies (in Hertz)
fERBs = erbs2hz(np.arange(hz2erbs(pc[0] / 4), hz2erbs(Fs / 2), derbs))
for i in range(0, len(ws)):
N = ws[i]
H = int(N / 2)
x_zero_padded = np.concatenate([x, np.zeros(N)])
X = librosa.stft(x_zero_padded, n_fft=N, hop_length=H, pad_mode='constant', center=True)
ti = librosa.frames_to_time(np.arange(0, X.shape[1]), sr=Fs, hop_length=H, n_fft=N)
f = librosa.fft_frequencies(sr=Fs, n_fft=N)
ti = np.insert(ti, 0, 0)
ti = np.delete(ti, -1)
spectrum = np.abs(X)
magnitude = resample_ferbs(spectrum, f, fERBs)
loudness = np.sqrt(magnitude)
# Select candidates that use this window size
# First window
if i == 0:
j = np.argwhere(d < 1).flatten()
k = np.argwhere(d[j] > 0).flatten()
# Last Window
elif i == len(ws) - 1:
j = np.argwhere(d - i > -1).flatten()
k = np.argwhere(d[j] - i < 0).flatten()
else:
j = np.argwhere(np.abs(d - i) < 1).flatten()
k = np.arange(0, len(j))
pc_to_compute = pc[j]
pitch_strength = pitch_strength_all_candidates(fERBs, loudness, pc_to_compute)
resampled_pitch_strength = resample_time(pitch_strength, t, ti)
lambda_ = d[j[k]] - i
mu = np.ones(len(j))
mu[k] = 1 - np.abs(lambda_)
S[j, :] = S[j, :] + np.multiply(
np.ones(resampled_pitch_strength.shape) * mu.reshape((mu.shape[0], 1)),
resampled_pitch_strength
)
# Fine-tune the pitch using parabolic interpolation
pitches, strength = parabolic_int(S, strength_threshold, pc)
pitches[np.where(np.isnan(pitches))] = 0 # avoid NaN output
return pitches, t, strength
def nyquist(Fs):
"""Nyquist Frequency"""
return Fs / 2
def F_coef(k, N, Fs):
"""Physical frequency of STFT coefficients"""
return (k * Fs) / N
def T_coef(m, H, Fs):
"""Physical time of STFT coefficients"""
return m * H / Fs
def stft_with_f_t(y, N, H, Fs):
"""STFT wrapper"""
x = librosa.stft(y, int(N), int(H), pad_mode='constant', center=True)
f = F_coef(np.arange(0, x.shape[0]), N, Fs)
t = T_coef(np.arange(0, x.shape[1]), H, Fs)
return x, f, t
def hz2erbs(hz):
"""Convert Hz to ERB scale"""
return 21.4 * np.log10(1 + hz / 229)
def erbs2hz(erbs):
"""Convert ERB to Hz"""
return (10 ** np.divide(erbs, 21.4) - 1) * 229
def pitch_strength_all_candidates(ferbs, loudness, pitch_candidates):
"""Compute pitch strength for all pitch candidates"""
# Normalize loudness
normalization_loudness = np.full_like(loudness, np.sqrt(np.sum(loudness * loudness, axis=0)))
with np.errstate(divide='ignore', invalid='ignore'):
loudness = loudness / normalization_loudness
# Create pitch salience matrix
S = np.zeros((len(pitch_candidates), loudness.shape[1]))
for j in range(0, len(pitch_candidates)):
S[j, :] = pitch_strength_one(ferbs, loudness, pitch_candidates[j])
return S
def pitch_strength_one(erbs_frequencies, normalized_loudness, pitch_candidate):
"""Compute pitch strength for one pitch candidate"""
number_of_harmonics = np.floor(erbs_frequencies[-1] / pitch_candidate - 0.75).astype(np.int32)
k = np.zeros(erbs_frequencies.shape)
# f_prime / f
q = erbs_frequencies / pitch_candidate
for i in np.concatenate(([1], primes(number_of_harmonics))):
a = np.abs(q - i)
p = a < 0.25
k[p] = np.cos(np.dot(2 * np.pi, q[p]))
v = np.logical_and(0.25 < a, a < 0.75)
k[v] = k[v] + np.cos(np.dot(2 * np.pi, q[v])) / 2
# Apply envelope
k = np.multiply(k, np.sqrt(1.0 / erbs_frequencies))
# K+-normalize kernel
k = k / np.linalg.norm(k[k > 0])
# Compute pitch strength
S = np.dot(k, normalized_loudness)
return S
def resample_ferbs(spectrum, f, ferbs):
"""Resample to ERB scale"""
magnitude = np.zeros((len(ferbs), spectrum.shape[1]))
for t in range(spectrum.shape[1]):
spl = interpolate.splrep(f, spectrum[:, t])
interpolate.splev(ferbs, spl)
magnitude[:, t] = interpolate.splev(ferbs, spl)
return np.maximum(magnitude, 0)
def resample_time(pitch_strength, resampled_time, ti):
"""Resample time axis"""
if pitch_strength.shape[1] > 0:
pitch_strength = interpolate_one_candidate(pitch_strength, ti, resampled_time)
else:
pitch_strength = np.kron(np.ones((len(pitch_strength), len(resampled_time))), np.NaN)
return pitch_strength
def interpolate_one_candidate(pitch_strength, ti, resampled_time):
"""Interpolate time axis"""
pitch_strength_interpolated = np.zeros((pitch_strength.shape[0], len(resampled_time)))
for s in range(pitch_strength.shape[0]):
t_i = interpolate.interp1d(ti, pitch_strength[s, :], 'linear', bounds_error=True)
pitch_strength_interpolated[s, :] = t_i(resampled_time)
return pitch_strength_interpolated
def parabolic_int(pitch_strength, strength_threshold, pc):
"""Parabolic interpolation between pitch candidates using pitch strength"""
p = np.full((pitch_strength.shape[1],), np.NaN)
s = np.full((pitch_strength.shape[1],), np.NaN)
for j in range(pitch_strength.shape[1]):
i = np.argmax(pitch_strength[:, j])
s[j] = pitch_strength[i, j]
if s[j] < strength_threshold:
continue
if i == 0:
p[j] = pc[0]
elif i == len(pc) - 1:
p[j] = pc[0]
else:
I = np.arange(i - 1, i + 2)
tc = 1 / pc[I]
ntc = np.dot((tc / tc[1] - 1), 2 * np.pi)
if np.any(np.isnan(pitch_strength[I, j])):
s[j] = np.nan
p[j] = np.nan
else:
c = np.polyfit(ntc, pitch_strength[I, j], 2)
ftc = 1 / 2 ** np.arange(np.log2(pc[I[0]]), np.log2(pc[I[2]]), 1 / 12 / 64)
nftc = np.dot((ftc / tc[1] - 1), 2 * np.pi)
poly = np.polyval(c, nftc)
k = np.argmax(poly)
s[j] = poly[k]
p[j] = 2 ** (np.log2(pc[I[0]]) + k / 12 / 64)
return p, s
def primes(n):
"""Returns a set of n prime numbers"""
small_primes = np.array([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619,
631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997])
b = small_primes <= n
return small_primes[b]
|