Spaces:
Running
Running
File size: 14,017 Bytes
9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
"""
| Description: libf0 salience-based F0 estimation implementation
| Author: Sebastian Rosenzweig, Simon Schwär, Meinard Müller
| License: The MIT license, https://opensource.org/licenses/MIT
| This file is part of libf0.
"""
import numpy as np
from librosa import stft
from scipy import ndimage, linalg
from numba import njit
def salience(x, Fs=22050, N=2048, H=256, F_min=55.0, F_max=1760.0, R=10.0, num_harm=10, freq_smooth_len=11,
alpha=0.9, gamma=0.0, constraint_region=None, tol=5, score_low=0.01, score_high=1.0):
"""
Implementation of a salience-based F0-estimation algorithm using pitch contours, inspired by Melodia.
.. [#] Justin Salamon and Emilia Gómez,
"Melody Extraction From Polyphonic Music Signals Using Pitch Contour Characteristics."
IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 6, pp. 1759–1770, Aug. 2012.
Parameters
----------
x : ndarray
Audio signal
Fs : int
Sampling rate
N : int
Window size
H : int
Hop size
F_min : float or int
Minimal frequency
F_max : float or int
Maximal frequency
R : int
Frequency resolution given in cents
num_harm : int
Number of harmonics (Default value = 10)
freq_smooth_len : int
Filter length for vertical smoothing (Default value = 11)
alpha : float
Weighting parameter for harmonics (Default value = 0.9)
gamma : float
Logarithmic compression factor (Default value = 0.0)
constraint_region : None or ndarray
Constraint regions, row-format: (t_start_sec, t_end_sec, f_start_hz, f_end,hz)
(Default value = None)
tol : int
Tolerance parameter for transition matrix (Default value = 5)
score_low : float
Score (low) for transition matrix (Default value = 0.01)
score_high : float
Score (high) for transition matrix (Default value = 1.0)
Returns
-------
f0 : ndarray
Estimated F0-trajectory
T_coef: ndarray
Time axis
sal: ndarray
Salience value of estimated F0
See also
--------
[FMP] Notebook: C8/C8S2_SalienceRepresentation.ipynb
"""
# compute salience representation via instantaneous frequency and harmonic summation
Z, F_coef_hertz = compute_salience_rep(x, Fs, N=N, H=H, F_min=F_min, F_max=F_max, R=R,
num_harm=num_harm, freq_smooth_len=freq_smooth_len,
alpha=alpha, gamma=gamma)
# compute trajectory via dynamic programming
T_coef = (np.arange(Z.shape[1]) * H) / Fs
index_CR = compute_trajectory_cr(Z, T_coef, F_coef_hertz, constraint_region,
tol=tol, score_low=score_low, score_high=score_high)
traj = F_coef_hertz[index_CR]
traj[index_CR == -1] = 0
# compute salience value
Z_max = np.max(Z, axis=0)
Z_norm = np.divide(Z, np.ones((Z.shape[0], 1)) * Z_max)
sal = Z_norm[index_CR, np.arange(Z.shape[1])]
sal[traj == 0] = 0
return traj, T_coef, sal
def compute_salience_rep(x, Fs, N, H, F_min, F_max, R, num_harm, freq_smooth_len, alpha, gamma):
"""
Compute salience representation [FMP, Eq. (8.56)]
Parameters
----------
x : ndarray
Audio signal
Fs : int
Sampling rate
N : int
Window size
H : int
Hop size
F_min : float or int
Minimal frequency
F_max : float or int
Maximal frequency
R : int
Frequency resolution given in cents
num_harm : int
Number of harmonics
freq_smooth_len : int
Filter length for vertical smoothing
alpha : float
Weighting parameter for harmonics
gamma : float
Logarithmic compression factor
Returns
-------
Z : ndarray
Salience representation
F_coef_hertz : ndarray
Frequency axis in Hz
See also
--------
[FMP] Notebook: C8/C8S2_SalienceRepresentation.ipynb
"""
X = stft(x, n_fft=N, hop_length=H, win_length=N, pad_mode='constant')
Y_LF_IF_bin, F_coef_hertz = compute_y_lf_if_bin_eff(X, Fs, N, H, F_min, F_max, R)
# smoothing
Y_LF_IF_bin = ndimage.convolve1d(Y_LF_IF_bin, np.hanning(freq_smooth_len), axis=0, mode='constant')
Z = compute_salience_from_logfreq_spec(Y_LF_IF_bin, R, n_harmonics=num_harm, alpha=alpha, beta=1, gamma=gamma)
return Z, F_coef_hertz
def compute_y_lf_if_bin_eff(X, Fs, N, H, F_min, F_max, R):
"""
Binned Log-frequency Spectrogram with variable frequency resolution based on instantaneous frequency,
more efficient implementation than FMP
Parameters
----------
X : ndarray
Complex spectrogram
Fs : int
Sampling rate in Hz
N : int
Window size
H : int
Hop size
F_min : float or int
Minimal frequency
F_max : float or int
Maximal frequency
R : int
Frequency resolution given in cents
Returns
-------
Y_LF_IF_bin : ndarray
Binned log-frequency spectrogram using instantaneous frequency (shape: [freq, time])
F_coef_hertz : ndarray
Frequency axis in Hz
"""
# calculate number of bins on log frequency axis
B = frequency_to_bin_index(F_max, R, F_min) + 1
# center frequencies of the final bins
F_coef_hertz = F_min * np.power(2, (np.arange(0, B) * R / 1200))
# calculate heterodyned phase increment (hpi)
k = np.arange(X.shape[0]).reshape(-1, 1)
omega = 2 * np.pi * k / N # center frequency for each bin in rad
hpi = (np.angle(X[:, 1:]) - np.angle(X[:, 0:-1])) - omega * H
# reduce hpi to -pi:pi range
# this is much faster than using the modulo function below, but gives the same result
# hpi = np.mod(hpi + np.pi, 2 * np.pi) - np.pi
hpi = hpi - 2 * np.pi * (np.around((hpi / (2 * np.pi)) + 1) - 1)
# calculate instantaneous frequencies in Hz
inst_f = (omega + hpi / H) * Fs / (2 * np.pi)
# repeat the first time frame to match dimensions of X
inst_f = np.hstack((np.copy(inst_f[:, 0]).reshape(-1, 1), inst_f))
# mask frequencies that are not relevant
mask = np.logical_and(inst_f >= F_min, inst_f < F_max)
inst_f *= mask
# set 0 to nan, so it does stay at nan in the bin assignment calculation
inst_f[np.where(inst_f == 0)] = np.nan
# find which inst_f values belong to which bin
bin_assignment = frequency_to_bin_index(inst_f, R, F_min)
# we map the discarded values to an extra bin that we remove before returning the binned spectrogram
bin_assignment[np.where(np.isnan(inst_f))] = B
# perform binning on power spectrogram for each time frame separately
Y = np.abs(X) ** 2
Y_LF_IF_bin = np.zeros((B+1, Y.shape[1]))
for t in range(Y.shape[1]):
np.add.at(Y_LF_IF_bin[:, t], bin_assignment[:, t], Y[:, t])
return Y_LF_IF_bin[:B, :], F_coef_hertz
def compute_salience_from_logfreq_spec(lf_spec, R, n_harmonics, alpha, beta, gamma, harmonic_win_len=11):
"""
Compute salience representation using harmonic summation following [1]
[1] J. Salamon and E. Gomez,
"Melody Extraction From Polyphonic Music Signals Using Pitch Contour Characteristics."
IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 6, pp. 1759–1770, Aug. 2012.
Parameters
----------
lf_spec : ndarray
(F, T) log-spectrogram
R : int
Frequency resolution given in cents
n_harmonics : int
Number of harmonics
alpha : float
Weighting parameter for harmonics
beta : float
Compression parameter for spectrogram magnitudes
gamma : float
Magnitude threshold
harmonic_win_len : int
Length of a frequency weighting window in bins
Returns
-------
Z : ndarray
(F, T) salience representation of the input spectrogram
"""
# magnitude thresholding and compression
eps = np.finfo(np.float32).eps
threshold_mask = (20 * np.log10(lf_spec/np.max(lf_spec) + eps)) < gamma
lf_spec = lf_spec**beta * threshold_mask
# compute window
max_diff_bins = harmonic_win_len // 2
window = np.cos(np.linspace(-1, 1, 2*max_diff_bins+1)*np.pi/2)**2 # cosine^2 window
# compute indices of harmonics
harmonics = np.round(np.log2(np.arange(1, n_harmonics + 1)) * 1200 / R).astype(int)
weighting_vec = np.zeros((lf_spec.shape[0] + max_diff_bins))
# compute weights
for idx, h in enumerate(harmonics):
if h+harmonic_win_len > len(weighting_vec):
break # we reached the maximum length available
weighting_vec[h:h+harmonic_win_len] += window * alpha**idx
# correlate lf_spec with the weighting vector on the frequency axis
Z = ndimage.correlate1d(lf_spec, weighting_vec[:],
axis=0, mode='constant', cval=0, origin=-len(weighting_vec)//2 + max_diff_bins)
# magnitude thresholding and compression
threshold_mask = (20 * np.log10(Z / np.max(Z) + eps)) < gamma
Z = Z ** beta * threshold_mask
return Z
def define_transition_matrix(B, tol=0, score_low=0.01, score_high=1.0):
"""
Generate transition matrix for dynamic programming
Parameters
----------
B : int
Number of bins
tol : int
Tolerance parameter for transition matrix (Default value = 0)
score_low : float
Score (low) for transition matrix (Default value = 0.01)
score_high : float
Score (high) for transition matrix (Default value = 1.0)
Returns
-------
T : ndarray
(B, B) Transition matrix
See also
--------
[FMP] Notebook: C8/C8S2_FundFreqTracking.ipynb
"""
col = np.ones((B,)) * score_low
col[0:tol+1] = np.ones((tol+1, )) * score_high
T = linalg.toeplitz(col)
return T
@njit
def compute_trajectory_dp(Z, T):
"""
Trajectory tracking using dynamic programming
Parameters
----------
Z : ndarray
Salience representation
T : ndarray
Transisition matrix
Returns
-------
eta_DP : ndarray
Trajectory indices
See also
--------
[FMP] Notebook: C8/C8S2_FundFreqTracking.ipynb
"""
B, N = Z.shape
eps_machine = np.finfo(np.float32).eps
Z_log = np.log(Z + eps_machine)
T_log = np.log(T + eps_machine)
E = np.zeros((B, N))
D = np.zeros((B, N))
D[:, 0] = Z_log[:, 0]
for n in np.arange(1, N):
for b in np.arange(0, B):
D[b, n] = np.max(T_log[b, :] + D[:, n-1]) + Z_log[b, n]
E[b, n-1] = np.argmax(T_log[b, :] + D[:, n-1])
# backtracking
eta_DP = np.zeros(N)
eta_DP[N-1] = int(np.argmax(D[:, N-1]))
for n in np.arange(N-2, -1, -1):
eta_DP[n] = E[int(eta_DP[n+1]), n]
return eta_DP.astype(np.int64)
def compute_trajectory_cr(Z, T_coef, F_coef_hertz, constraint_region=None,
tol=5, score_low=0.01, score_high=1.0):
"""
Trajectory tracking with constraint regions
Notebook: C8/C8S2_FundFreqTracking.ipynb
Parameters
----------
Z : ndarray
Salience representation
T_coef : ndarray
Time axis
F_coef_hertz : ndarray
Frequency axis in Hz
constraint_region : ndarray or None
Constraint regions, row-format: (t_start_sec, t_end_sec, f_start_hz, f_end_hz)
(Default value = None)
tol : int
Tolerance parameter for transition matrix (Default value = 5)
score_low : float
Score (low) for transition matrix (Default value = 0.01)
score_high : float
Score (high) for transition matrix (Default value = 1.0)
Returns
-------
eta : ndarray
Trajectory indices, unvoiced frames are indicated with -1
See also
--------
[FMP] Notebook: C8/C8S2_FundFreqTracking.ipynb
"""
# do tracking within every constraint region
if constraint_region is not None:
# initialize contour, unvoiced frames are indicated with -1
eta = np.full(len(T_coef), -1)
for row_idx in range(constraint_region.shape[0]):
t_start = constraint_region[row_idx, 0] # sec
t_end = constraint_region[row_idx, 1] # sec
f_start = constraint_region[row_idx, 2] # Hz
f_end = constraint_region[row_idx, 3] # Hz
# convert start/end values to indices
t_start_idx = np.argmin(np.abs(T_coef - t_start))
t_end_idx = np.argmin(np.abs(T_coef - t_end))
f_start_idx = np.argmin(np.abs(F_coef_hertz - f_start))
f_end_idx = np.argmin(np.abs(F_coef_hertz - f_end))
# track in salience part
cur_Z = Z[f_start_idx:f_end_idx+1, t_start_idx:t_end_idx+1]
T = define_transition_matrix(cur_Z.shape[0], tol=tol,
score_low=score_low, score_high=score_high)
cur_eta = compute_trajectory_dp(cur_Z, T)
# fill contour
eta[t_start_idx:t_end_idx+1] = f_start_idx + cur_eta
else:
T = define_transition_matrix(Z.shape[0], tol=tol, score_low=score_low, score_high=score_high)
eta = compute_trajectory_dp(Z, T)
return eta
def frequency_to_bin_index(F, R, F_ref):
"""
Binning function with variable frequency resolution
Note: Indexing starts with 0 (opposed to [FMP, Eq. (8.49)])
Parameters
----------
F : float or ndarray
Frequency in Hz
R : float
Frequency resolution in cents (Default value = 10.0)
F_ref : float
Reference frequency in Hz (Default value = 55.0)
Returns
-------
bin_index (int): Index for bin (starting with index 0)
See also
--------
[FMP] Notebook: C8/C8S2_SalienceRepresentation.ipynb
"""
bin_index = np.floor((1200 / R) * np.log2(F / F_ref) + 0.5).astype(np.int64)
return bin_index
|