Spaces:
Running
Running
File size: 21,505 Bytes
9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import os
import subprocess
import yaml
import sys
import webbrowser
import gradio as gr
from ruamel.yaml import YAML
import shutil
import soundfile
import shlex
import locale
class WebUI:
def __init__(self):
self.train_config_path = 'configs/train.yaml'
self.info = Info()
self.names = []
self.names2 = []
self.voice_names = []
self.base_config_path = 'configs/base.yaml'
if not os.path.exists(self.train_config_path):
shutil.copyfile(self.base_config_path, self.train_config_path)
print(i18n("初始化成功"))
else:
print(i18n("就绪"))
self.main_ui()
def main_ui(self):
with gr.Blocks(theme=gr.themes.Base(primary_hue=gr.themes.colors.green)) as ui:
gr.Markdown('# so-vits-svc5.0 WebUI')
with gr.Tab(i18n("预处理-训练")):
with gr.Accordion(i18n('训练说明'), open=False):
gr.Markdown(self.info.train)
gr.Markdown(i18n('### 预处理参数设置'))
with gr.Row():
self.model_name = gr.Textbox(value='sovits5.0', label='model', info=i18n('模型名称'), interactive=True) #建议设置为不可修改
self.f0_extractor = gr.Textbox(value='crepe', label='f0_extractor', info=i18n('f0提取器'), interactive=False)
self.thread_count = gr.Slider(minimum=1, maximum=os.cpu_count(), step=1, value=2, label='thread_count', info=i18n('预处理线程数'), interactive=True)
gr.Markdown(i18n('### 训练参数设置'))
with gr.Row():
self.learning_rate = gr.Number(value=5e-5, label='learning_rate', info=i18n('学习率'), interactive=True)
self.batch_size = gr.Slider(minimum=1, maximum=50, step=1, value=6, label='batch_size', info=i18n('批大小'), interactive=True)
with gr.Row():
self.info_interval = gr.Number(value=50, label='info_interval', info=i18n('训练日志记录间隔(step)'), interactive=True)
self.eval_interval = gr.Number(value=1, label='eval_interval', info=i18n('验证集验证间隔(epoch)'), interactive=True)
self.save_interval = gr.Number(value=5, label='save_interval', info=i18n('检查点保存间隔(epoch)'), interactive=True)
self.keep_ckpts = gr.Number(value=0, label='keep_ckpts', info=i18n('保留最新的检查点文件(0保存全部)'),interactive=True)
with gr.Row():
self.slow_model = gr.Checkbox(label=i18n("是否添加底模"), value=True, interactive=True)
gr.Markdown(i18n('### 开始训练'))
with gr.Row():
self.bt_open_dataset_folder = gr.Button(value=i18n('打开数据集文件夹'))
self.bt_onekey_train = gr.Button(i18n('一键训练'), variant="primary")
self.bt_tb = gr.Button(i18n('启动Tensorboard'), variant="primary")
gr.Markdown(i18n('### 恢复训练'))
with gr.Row():
self.resume_model = gr.Dropdown(choices=sorted(self.names), label='Resume training progress from checkpoints', info=i18n('从检查点恢复训练进度'), interactive=True)
with gr.Column():
self.bt_refersh = gr.Button(i18n('刷新'))
self.bt_resume_train = gr.Button(i18n('恢复训练'), variant="primary")
with gr.Tab(i18n("推理")):
with gr.Accordion(i18n('推理说明'), open=False):
gr.Markdown(self.info.inference)
gr.Markdown(i18n('### 推理参数设置'))
with gr.Row():
with gr.Column():
self.keychange = gr.Slider(-24, 24, value=0, step=1, label=i18n('变调'))
self.file_list = gr.Markdown(value="", label=i18n("文件列表"))
with gr.Row():
self.resume_model2 = gr.Dropdown(choices=sorted(self.names2), label='Select the model you want to export',
info=i18n('选择要导出的模型'), interactive=True)
with gr.Column():
self.bt_refersh2 = gr.Button(value=i18n('刷新模型和音色'))
self.bt_out_model = gr.Button(value=i18n('导出模型'), variant="primary")
with gr.Row():
self.resume_voice = gr.Dropdown(choices=sorted(self.voice_names), label='Select the sound file',
info=i18n('选择音色文件'), interactive=True)
with gr.Row():
self.input_wav = gr.Audio(type='filepath', label=i18n('选择待转换音频'), source='upload')
with gr.Row():
self.bt_infer = gr.Button(value=i18n('开始转换'), variant="primary")
with gr.Row():
self.output_wav = gr.Audio(label=i18n('输出音频'), interactive=False)
self.bt_open_dataset_folder.click(fn=self.openfolder)
self.bt_onekey_train.click(fn=self.onekey_training,inputs=[self.model_name, self.thread_count,self.learning_rate,self.batch_size, self.info_interval, self.eval_interval,self.save_interval, self.keep_ckpts, self.slow_model])
self.bt_out_model.click(fn=self.out_model, inputs=[self.model_name, self.resume_model2])
self.bt_tb.click(fn=self.tensorboard)
self.bt_refersh.click(fn=self.refresh_model, inputs=[self.model_name], outputs=[self.resume_model])
self.bt_resume_train.click(fn=self.resume_train, inputs=[self.model_name, self.resume_model, self.learning_rate,self.batch_size, self.info_interval, self.eval_interval,self.save_interval, self.keep_ckpts, self.slow_model])
self.bt_infer.click(fn=self.inference, inputs=[self.input_wav, self.resume_voice, self.keychange], outputs=[self.output_wav])
self.bt_refersh2.click(fn=self.refresh_model_and_voice, inputs=[self.model_name],outputs=[self.resume_model2, self.resume_voice])
ui.launch(inbrowser=True, server_port=2333, share=True)
def openfolder(self):
try:
if sys.platform.startswith('win'):
os.startfile('dataset_raw')
elif sys.platform.startswith('linux'):
subprocess.call(['xdg-open', 'dataset_raw'])
elif sys.platform.startswith('darwin'):
subprocess.call(['open', 'dataset_raw'])
else:
print(i18n('打开文件夹失败!'))
except BaseException:
print(i18n('打开文件夹失败!'))
def preprocessing(self, thread_count):
print(i18n('开始预处理'))
train_process = subprocess.Popen('python -u svc_preprocessing.py -t ' + str(thread_count), stdout=subprocess.PIPE)
while train_process.poll() is None:
output = train_process.stdout.readline().decode('utf-8')
print(output, end='')
def create_config(self, model_name, learning_rate, batch_size, info_interval, eval_interval, save_interval,
keep_ckpts, slow_model):
yaml = YAML()
yaml.preserve_quotes = True
yaml.width = 1024
with open("configs/train.yaml", "r") as f:
config = yaml.load(f)
config['train']['model'] = model_name
config['train']['learning_rate'] = learning_rate
config['train']['batch_size'] = batch_size
config["log"]["info_interval"] = int(info_interval)
config["log"]["eval_interval"] = int(eval_interval)
config["log"]["save_interval"] = int(save_interval)
config["log"]["keep_ckpts"] = int(keep_ckpts)
if slow_model:
config["train"]["pretrain"] = "vits_pretrain\sovits5.0.pretrain.pth"
else:
config["train"]["pretrain"] = ""
with open("configs/train.yaml", "w") as f:
yaml.dump(config, f)
return f"{config['log']}"
def training(self, model_name):
print(i18n('开始训练'))
train_process = subprocess.Popen('python -u svc_trainer.py -c ' + self.train_config_path + ' -n ' + str(model_name), stdout=subprocess.PIPE, creationflags=subprocess.CREATE_NEW_CONSOLE)
while train_process.poll() is None:
output = train_process.stdout.readline().decode('utf-8')
print(output, end='')
def onekey_training(self, model_name, thread_count, learning_rate, batch_size, info_interval, eval_interval, save_interval, keep_ckpts, slow_model):
print(self, model_name, thread_count, learning_rate, batch_size, info_interval, eval_interval,
save_interval, keep_ckpts)
self.create_config(model_name, learning_rate, batch_size, info_interval, eval_interval, save_interval, keep_ckpts, slow_model)
self.preprocessing(thread_count)
self.training(model_name)
def out_model(self, model_name, resume_model2):
print(i18n('开始导出模型'))
try:
subprocess.Popen('python -u svc_export.py -c {} -p "chkpt/{}/{}"'.format(self.train_config_path, model_name, resume_model2),stdout=subprocess.PIPE)
print(i18n('导出模型成功'))
except Exception as e:
print(i18n("出现错误:"), e)
def tensorboard(self):
if sys.platform.startswith('win'):
tb_process = subprocess.Popen('tensorboard --logdir=logs --port=6006', stdout=subprocess.PIPE)
webbrowser.open("http://localhost:6006")
else:
p1 = subprocess.Popen(["ps", "-ef"], stdout=subprocess.PIPE) #ps -ef | grep tensorboard | awk '{print $2}' | xargs kill -9
p2 = subprocess.Popen(["grep", "tensorboard"], stdin=p1.stdout, stdout=subprocess.PIPE)
p3 = subprocess.Popen(["awk", "{print $2}"], stdin=p2.stdout, stdout=subprocess.PIPE)
p4 = subprocess.Popen(["xargs", "kill", "-9"], stdin=p3.stdout)
p1.stdout.close()
p2.stdout.close()
p3.stdout.close()
p4.communicate()
tb_process = subprocess.Popen('tensorboard --logdir=logs --port=6007', stdout=subprocess.PIPE) # AutoDL端口设置为6007
while tb_process.poll() is None:
output = tb_process.stdout.readline().decode('utf-8')
print(output)
def refresh_model(self, model_name):
self.script_dir = os.path.dirname(os.path.abspath(__file__))
self.model_root = os.path.join(self.script_dir, f"chkpt/{model_name}")
self.names = []
try:
for self.name in os.listdir(self.model_root):
if self.name.endswith(".pt"):
self.names.append(self.name)
return {"choices": sorted(self.names), "__type__": "update"}
except FileNotFoundError:
return {"label": i18n("缺少模型文件"), "__type__": "update"}
def refresh_model2(self, model_name):
self.script_dir = os.path.dirname(os.path.abspath(__file__))
self.model_root = os.path.join(self.script_dir, f"chkpt/{model_name}")
self.names2 = []
try:
for self.name in os.listdir(self.model_root):
if self.name.endswith(".pt"):
self.names2.append(self.name)
return {"choices": sorted(self.names2), "__type__": "update"}
except FileNotFoundError:
return {"label": i18n("缺少模型文件"), "__type__": "update"}
def refresh_voice(self):
self.script_dir = os.path.dirname(os.path.abspath(__file__))
self.model_root = os.path.join(self.script_dir, "data_svc/singer")
self.voice_names = []
try:
for self.name in os.listdir(self.model_root):
if self.name.endswith(".npy"):
self.voice_names.append(self.name)
return {"choices": sorted(self.voice_names), "__type__": "update"}
except FileNotFoundError:
return {"label": i18n("缺少文件"), "__type__": "update"}
def refresh_model_and_voice(self, model_name):
model_update = self.refresh_model2(model_name)
voice_update = self.refresh_voice()
return model_update, voice_update
def resume_train(self, model_name, resume_model ,learning_rate, batch_size, info_interval, eval_interval, save_interval, keep_ckpts, slow_model):
print(i18n('开始恢复训练'))
self.create_config(model_name, learning_rate, batch_size, info_interval, eval_interval, save_interval,keep_ckpts, slow_model)
train_process = subprocess.Popen('python -u svc_trainer.py -c {} -n {} -p "chkpt/{}/{}"'.format(self.train_config_path, model_name, model_name, resume_model), stdout=subprocess.PIPE, creationflags=subprocess.CREATE_NEW_CONSOLE)
while train_process.poll() is None:
output = train_process.stdout.readline().decode('utf-8')
print(output, end='')
def inference(self, input, resume_voice, keychange):
if os.path.exists("test.wav"):
os.remove("test.wav")
print(i18n("已清理残留文件"))
else:
print(i18n("无需清理残留文件"))
self.train_config_path = 'configs/train.yaml'
print(i18n('开始推理'))
shutil.copy(input, ".")
input_name = os.path.basename(input)
os.rename(input_name, "test.wav")
input_name = "test.wav"
if not input_name.endswith(".wav"):
data, samplerate = soundfile.read(input_name)
input_name = input_name.rsplit(".", 1)[0] + ".wav"
soundfile.write(input_name, data, samplerate)
train_config_path = shlex.quote(self.train_config_path)
keychange = shlex.quote(str(keychange))
cmd = ["python", "-u", "svc_inference.py", "--config", train_config_path, "--model", "sovits5.0.pth", "--spk",
f"data_svc/singer/{resume_voice}", "--wave", "test.wav", "--shift", keychange]
train_process = subprocess.run(cmd, shell=False, capture_output=True, text=True)
print(train_process.stdout)
print(train_process.stderr)
print(i18n("推理成功"))
return "svc_out.wav"
class Info:
def __init__(self) -> None:
self.train = i18n('### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完')
self.inference = i18n('### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完')
LANGUAGE_LIST = ['zh_CN', 'en_US']
LANGUAGE_ALL = {
'zh_CN': {
'SUPER': 'END',
'LANGUAGE': 'zh_CN',
'初始化成功': '初始化成功',
'就绪': '就绪',
'预处理-训练': '预处理-训练',
'训练说明': '训练说明',
'### 预处理参数设置': '### 预处理参数设置',
'模型名称': '模型名称',
'f0提取器': 'f0提取器',
'预处理线程数': '预处理线程数',
'### 训练参数设置': '### 训练参数设置',
'学习率': '学习率',
'批大小': '批大小',
'训练日志记录间隔(step)': '训练日志记录间隔(step)',
'验证集验证间隔(epoch)': '验证集验证间隔(epoch)',
'检查点保存间隔(epoch)': '检查点保存间隔(epoch)',
'保留最新的检查点文件(0保存全部)': '保留最新的检查点文件(0保存全部)',
'是否添加底模': '是否添加底模',
'### 开始训练': '### 开始训练',
'打开数据集文件夹': '打开数据集文件夹',
'一键训练': '一键训练',
'启动Tensorboard': '启动Tensorboard',
'### 恢复训练': '### 恢复训练',
'从检查点恢复训练进度': '从检查点恢复训练进度',
'刷新': '刷新',
'恢复训练': '恢复训练',
'推理': '推理',
'推理说明': '推理说明',
'### 推理参数设置': '### 推理参数设置',
'变调': '变调',
'文件列表': '文件列表',
'选择要导出的模型': '选择要导出的模型',
'刷新模型和音色': '刷新模型和音色',
'导出模型': '导出模型',
'选择音色文件': '选择音色文件',
'选择待转换音频': '选择待转换音频',
'开始转换': '开始转换',
'输出音频': '输出音频',
'打开文件夹失败!': '打开文件夹失败!',
'开始预处理': '开始预处理',
'开始训练': '开始训练',
'开始导出模型': '开始导出模型',
'导出模型成功': '导出模型成功',
'出现错误:': '出现错误:',
'缺少模型文件': '缺少模型文件',
'缺少文件': '缺少文件',
'已清理残留文件': '已清理残留文件',
'无需清理残留文件': '无需清理残留文件',
'开始推理': '开始推理',
'推理成功': '推理成功',
'### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完': '### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完'
},
'en_US': {
'SUPER': 'zh_CN',
'LANGUAGE': 'en_US',
'初始化成功': 'Initialization successful',
'就绪': 'Ready',
'预处理-训练': 'Preprocessing-Training',
'训练说明': 'Training instructions',
'### 预处理参数设置': '### Preprocessing parameter settings',
'模型名称': 'Model name',
'f0提取器': 'f0 extractor',
'预处理线程数': 'Preprocessing thread number',
'### 训练参数设置': '### Training parameter settings',
'学习率': 'Learning rate',
'批大小': 'Batch size',
'训练日志记录间隔(step)': 'Training log recording interval (step)',
'验证集验证间隔(epoch)': 'Validation set validation interval (epoch)',
'检查点保存间隔(epoch)': 'Checkpoint save interval (epoch)',
'保留最新的检查点文件(0保存全部)': 'Keep the latest checkpoint file (0 save all)',
'是否添加底模': 'Whether to add the base model',
'### 开始训练': '### Start training',
'打开数据集文件夹': 'Open the dataset folder',
'一键训练': 'One-click training',
'启动Tensorboard': 'Start Tensorboard',
'### 恢复训练': '### Resume training',
'从检查点恢复训练进度': 'Restore training progress from checkpoint',
'刷新': 'Refresh',
'恢复训练': 'Resume training',
"推理": "Inference",
"推理说明": "Inference instructions",
"### 推理参数设置": "### Inference parameter settings",
"变调": "Pitch shift",
"文件列表": "File list",
"选择要导出的模型": "Select the model to export",
"刷新模型和音色": "Refresh model and timbre",
"导出模型": "Export model",
"选择音色文件": "Select timbre file",
"选择待转换音频": "Select audio to be converted",
"开始转换": "Start conversion",
"输出音频": "Output audio",
"打开文件夹失败!": "Failed to open folder!",
"开始预处理": "Start preprocessing",
"开始训练": "Start training",
"开始导出模型": "Start exporting model",
"导出模型成功": "Model exported successfully",
"出现错误:": "An error occurred:",
"缺少模型文件": "Missing model file",
'缺少文件': 'Missing file',
"已清理残留文件": "Residual files cleaned up",
"无需清理残留文件": "No need to clean up residual files",
"开始推理": "Start inference",
'### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)第一次编写|[@thestmitsuk](https://github.com/thestmitsuki)二次补完': '### 2023.7.11|[@OOPPEENN](https://github.com/OOPPEENN)first writing|[@thestmitsuk](https://github.com/thestmitsuki)second completion'
}
}
class I18nAuto:
def __init__(self, language=None):
self.language_list = LANGUAGE_LIST
self.language_all = LANGUAGE_ALL
self.language_map = {}
self.language = language or locale.getdefaultlocale()[0]
if self.language not in self.language_list:
self.language = 'zh_CN'
self.read_language(self.language_all['zh_CN'])
while self.language_all[self.language]['SUPER'] != 'END':
self.read_language(self.language_all[self.language])
self.language = self.language_all[self.language]['SUPER']
def read_language(self, lang_dict: dict):
self.language_map.update(lang_dict)
def __call__(self, key):
return self.language_map[key]
if __name__ == "__main__":
i18n = I18nAuto()
webui = WebUI()
|