Spaces:
Paused
Paused
| """ | |
| 2025.5.8 | |
| 2025.5.7 | |
| 4.51.3 | |
| 0.15.2 | |
| __UNSLOTH_VERSIONING__ | |
| """ | |
| from torch import Tensor | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| from trl.trainer.dpo_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DPOConfig, DPOTrainer, DataCollator, DataCollatorForPreference, DataLoader, Dataset, EvalLoopOutput, F, FDivergenceConstants, FDivergenceType, FeatureExtractionMixin, IterableDataset, Literal, MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES, Optional, PartialState, PeftModel, PreTrainedModel, PreTrainedModelWrapper, PreTrainedTokenizerBase, ProcessorMixin, RunningMoments, SyncRefModelCallback, Trainer, TrainerCallback, Union, amp, cap_exp, contextmanager, create_reference_model, dataclass, deepcopy, defaultdict, deprecate_kwarg, disable_dropout_in_model, empty_cache, flush_left, generate_model_card, get_comet_experiment_url, inspect, is_comet_available, is_peft_available, is_torch_xpu_available, is_wandb_available, log_table_to_comet_experiment, maybe_apply_chat_template, maybe_extract_prompt, nn, nullcontext, os, pad, pad_to_length, pd, peft_module_casting_to_bf16, prepare_model_for_kbit_training, random, textwrap, torch, tqdm, transformers, version, wandb, warnings) | |
| import os | |
| from typing import * | |
| from dataclasses import dataclass, field | |
| from packaging.version import Version | |
| import torch | |
| import numpy as np | |
| from contextlib import nullcontext | |
| from torch.nn import functional as F | |
| from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
| torch_compile_options = { | |
| "epilogue_fusion" : True, | |
| "max_autotune" : False, | |
| "shape_padding" : True, | |
| "trace.enabled" : False, | |
| "triton.cudagraphs" : False, | |
| } | |
| def selective_log_softmax(logits, index): | |
| logits = logits.to(torch.float32) | |
| selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
| # loop to reduce peak mem consumption | |
| # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
| logsumexp_values = torch.logsumexp(logits, dim = -1) | |
| per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
| return per_token_logps | |
| class UnslothDPOConfig(DPOConfig): | |
| """ | |
| Configuration class for the [`DPOTrainer`]. | |
| Using [`~transformers.HfArgumentParser`] we can turn this class into | |
| [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
| command line. | |
| Parameters: | |
| > Parameters that control the model and reference model | |
| model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
| Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `model` argument of the | |
| [`DPOTrainer`] is provided as a string. | |
| ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
| Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `ref_model` argument of the | |
| [`DPOTrainer`] is provided as a string. | |
| model_adapter_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the train target PEFT adapter, when using LoRA with multiple adapters. | |
| ref_adapter_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the reference PEFT adapter, when using LoRA with multiple adapters. | |
| force_use_ref_model (`bool`, *optional*, defaults to `False`): | |
| If you provide a PEFT model as the active model and wish to use a different model for the `ref_model`, set | |
| this flag to `True`. | |
| disable_dropout (`bool`, *optional*, defaults to `True`): | |
| Whether to disable dropout in the model and reference model. | |
| use_logits_to_keep (`bool`, *optional*, defaults to `False`): | |
| If `True`, only a specified number of logits are computed in the forward pass. This can be useful for | |
| saving memory and speeding up training by not computing the logits for all tokens, especially in | |
| scenarios when working with very long prompts where labels are ignored (-100). | |
| > Parameters that control the data preprocessing | |
| dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
| Number of processes to use for processing the dataset. | |
| padding_value (`int` or `None`, *optional*, defaults to `None`): | |
| Padding value to use. If `None`, the padding value of the tokenizer is used. | |
| label_pad_token_id (`int`, *optional*, defaults to `-100`): | |
| Padding value to use for labels. | |
| max_prompt_length (`int` or `None`, *optional*, defaults to `512`): | |
| Maximum length of the prompt. | |
| max_completion_length (`int` or `None`, *optional*, defaults to `None`): | |
| Maximum length of the completion. | |
| max_length (`int` or `None`, *optional*, defaults to `1024`): | |
| Maximum length of the full sequence (prompt + completion). | |
| truncation_mode (`str`, *optional*, defaults to `"keep_end"`): | |
| Truncation mode to use when the sequence exceeds `max_length`. Possible values are `"keep_end"` and | |
| `"keep_start"`. | |
| padding_free (`bool`, *optional*, defaults to `False`): | |
| Whether forward passes are performed without padding by flattening all sequences in the batch | |
| into a single continuous sequence. This approach requires associating a `position_ids` vector to track | |
| positional information. Currently, this is only supported with the `flash_attention_2` mechanism, as it | |
| can handle the flattened batch structure. | |
| precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): | |
| Whether to precompute the log probabilities from the reference model. Setting this to `True` allows | |
| training without needing the reference model during training, which can help reduce GPU memory usage. If | |
| set to `False` (default), the reference model will be used during training to compute log probabilities | |
| on-the-fly. | |
| precompute_ref_batch_size (`int` or `None`, *optional*, defaults to `None`): | |
| Batch size to use when precomputing reference model log probabilities. This can be set higher than the | |
| training batch size to speed up preprocessing. If `None`, defaults to `per_device_train_batch_size` for | |
| training and `per_device_eval_batch_size` for evaluation. | |
| tools (`Optional[list[Union[dict, Callable]]]`, *optional*, defaults to `None`): | |
| List of tools (callable functions) that will be accessible to the model. | |
| If the template does not support function calling, this argument will have no effect. | |
| > Parameters that control the training | |
| learning_rate (`float`, *optional*, defaults to `1e-6`): | |
| Initial learning rate for [`AdamW`] optimizer. The default value replaces that of | |
| [`~transformers.TrainingArguments`]. | |
| loss_type (`str`, *optional*, defaults to `"sigmoid"`): | |
| Type of loss to use. Possible values are: | |
| - `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper. | |
| - `"hinge"`: hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. | |
| - `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper. | |
| - `"exo_pair"`: pairwise EXO loss from the [EXO](https://huggingface.co/papers/2402.00856) paper. | |
| - `"nca_pair"`: pairwise NCA loss from the [NCA](https://huggingface.co/papers/2402.05369) paper. | |
| - `"robust"`: unbiased estimate of the DPO loss that is robust to preference noise from the [Robust DPO](https://huggingface.co/papers/2403.00409) paper. | |
| - `"bco_pair"`: pairwise BCO loss from the [BCO](https://huggingface.co/papers/2404.04656) paper. | |
| - `"sppo_hard"`: SPPO loss with hard label from the [SPPO](https://huggingface.co/papers/2405.00675) paper. | |
| - `"aot"`: AOT loss for paired datasets from the [AOT](https://huggingface.co/papers/2406.05882) paper. | |
| - `"aot_pair"`: AOT loss for unpaired datasets from the [AOT](https://huggingface.co/papers/2406.05882) paper. | |
| - `"discopop"`: DiscoPOP (a.k.a Log-Ratio Modulated Loss, LRML) loss from the [DiscoPOP](https://huggingface.co/papers/2406.08414) paper. | |
| - `"apo_zero"`: APO-zero loss from the [APO](https://huggingface.co/papers/2408.06266) paper. | |
| - `"apo_down"`: APO-down loss from the [APO](https://huggingface.co/papers/2408.06266) paper. | |
| beta (`float`, *optional*, defaults to `0.1`): | |
| Parameter controlling the deviation from the reference model. Higher β means less deviation from the | |
| reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in | |
| the [paper](https://huggingface.co/papers/2310.12036). | |
| f_divergence_type (`str`, *optional*, defaults to `FDivergenceType.REVERSE_KL`): | |
| Type of f-divergence regularization function to compute divergence between policy and reference model. | |
| f_alpha_divergence_coef (`float`, *optional*, defaults to `1.0`): | |
| α coefficient in the α-divergence u^-α regularization function for DPO loss. | |
| reference_free (`bool`, *optional*, defaults to `False`): | |
| Whether to ignore the provided reference model and implicitly use a reference model that assigns equal | |
| probability to all responses. | |
| label_smoothing (`float`, *optional*, defaults to `0.0`): | |
| Robust DPO label smoothing parameter from the [cDPO](https://ericmitchell.ai/cdpo.pdf) report and | |
| [Robust DPO](https://huggingface.co/papers/2403.00409) paper that should be between `0.0` and `0.5`. | |
| use_weighting (`bool`, *optional*, defaults to `False`): | |
| Whether to weight the loss as done in the [WPO](https://huggingface.co/papers/2406.11827) paper. | |
| rpo_alpha (`float`, *optional*, defaults to `None`): | |
| α parameter from the [RPO](https://huggingface.co/papers/2404.19733) paper (v3), which controls the | |
| weighting of the NLL term in the loss. If `None`, no weighting is applied and the loss is the same as the | |
| DPO loss. The paper recommends `rpo_alpha=1.0`. | |
| discopop_tau (`float`, *optional*, defaults to `0.05`): | |
| τ/temperature parameter from the [DiscoPOP](https://huggingface.co/papers/2406.08414) paper, which controls | |
| the shape of log ratio modulated loss. The paper recommends the default value `discopop_tau=0.05`. | |
| sync_ref_model (`bool`, *optional*, defaults to `False`): | |
| Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using | |
| the `ref_model_mixup_alpha` parameter. This synchronization originites from the | |
| [TR-DPO](https://huggingface.co/papers/2404.09656) paper. | |
| ref_model_mixup_alpha (`float`, *optional*, defaults to `0.9`): | |
| α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix | |
| between the current policy and the previous reference policy during updates. The reference policy is | |
| updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you | |
| must set `sync_ref_model=True`. | |
| ref_model_sync_steps (`int`, *optional*, defaults to `64`): | |
| τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how | |
| frequently the current policy is synchronized with the reference policy. To use this parameter, you must | |
| set `sync_ref_model=True`. | |
| > Parameters that control the logging | |
| generate_during_eval (`bool`, *optional*, defaults to `False`): | |
| Whether to generate and log completions from both the model and the reference model to W&B or Comet during | |
| evaluation. | |
| """ | |
| vllm_sampling_params: Optional[Any] = field( | |
| default = None, | |
| metadata = {'help': 'vLLM SamplingParams'}, | |
| ) | |
| unsloth_num_chunks : Optional[int] = field( | |
| default = -1, | |
| metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
| ) | |
| def __init__( | |
| self, | |
| output_dir = None, | |
| overwrite_output_dir = None, | |
| do_train = False, | |
| do_eval = False, | |
| do_predict = False, | |
| eval_strategy = 'no', | |
| prediction_loss_only = False, | |
| per_device_train_batch_size = 4, | |
| per_device_eval_batch_size = 4, | |
| per_gpu_train_batch_size = None, | |
| per_gpu_eval_batch_size = None, | |
| gradient_accumulation_steps = 2, | |
| eval_accumulation_steps = 2, | |
| eval_delay = 0, | |
| torch_empty_cache_steps = 250, | |
| learning_rate = 5e-05, | |
| weight_decay = 0.01, | |
| adam_beta1 = 0.9, | |
| adam_beta2 = 0.999, | |
| adam_epsilon = 1e-08, | |
| max_grad_norm = 1.0, | |
| num_train_epochs = 3.0, | |
| max_steps = -1, | |
| lr_scheduler_type = 'linear', | |
| warmup_ratio = 0.1, | |
| warmup_steps = 0, | |
| log_level = 'passive', | |
| log_level_replica = 'warning', | |
| log_on_each_node = True, | |
| logging_dir = None, | |
| logging_strategy = 'steps', | |
| logging_first_step = False, | |
| logging_steps = 1, | |
| logging_nan_inf_filter = False, | |
| save_strategy = 'steps', | |
| save_steps = 500, | |
| save_total_limit = None, | |
| save_safetensors = True, | |
| save_on_each_node = False, | |
| save_only_model = False, | |
| restore_callback_states_from_checkpoint = False, | |
| no_cuda = False, | |
| use_cpu = False, | |
| use_mps_device = False, | |
| seed = 3407, | |
| data_seed = 3407, | |
| jit_mode_eval = False, | |
| use_ipex = False, | |
| bf16 = False, | |
| fp16 = False, | |
| fp16_opt_level = 'O1', | |
| half_precision_backend = 'auto', | |
| bf16_full_eval = False, | |
| fp16_full_eval = False, | |
| tf32 = None, | |
| local_rank = -1, | |
| ddp_backend = None, | |
| tpu_num_cores = None, | |
| tpu_metrics_debug = False, | |
| debug = '', | |
| dataloader_drop_last = False, | |
| eval_steps = None, | |
| dataloader_num_workers = 0, | |
| dataloader_prefetch_factor = None, | |
| past_index = -1, | |
| run_name = None, | |
| disable_tqdm = None, | |
| remove_unused_columns = True, | |
| label_names = None, | |
| load_best_model_at_end = False, | |
| metric_for_best_model = None, | |
| greater_is_better = None, | |
| ignore_data_skip = False, | |
| fsdp = '', | |
| fsdp_min_num_params = 0, | |
| fsdp_config = None, | |
| tp_size = 0, | |
| fsdp_transformer_layer_cls_to_wrap = None, | |
| accelerator_config = None, | |
| deepspeed = None, | |
| label_smoothing_factor = 0.0, | |
| optim = 'adamw_8bit', | |
| optim_args = None, | |
| adafactor = False, | |
| group_by_length = False, | |
| length_column_name = 'length', | |
| report_to = None, | |
| ddp_find_unused_parameters = None, | |
| ddp_bucket_cap_mb = None, | |
| ddp_broadcast_buffers = None, | |
| dataloader_pin_memory = True, | |
| dataloader_persistent_workers = False, | |
| skip_memory_metrics = True, | |
| use_legacy_prediction_loop = False, | |
| push_to_hub = False, | |
| resume_from_checkpoint = None, | |
| hub_model_id = None, | |
| hub_strategy = 'every_save', | |
| hub_token = None, | |
| hub_private_repo = None, | |
| hub_always_push = False, | |
| gradient_checkpointing = False, | |
| gradient_checkpointing_kwargs = None, | |
| include_inputs_for_metrics = False, | |
| eval_do_concat_batches = True, | |
| fp16_backend = 'auto', | |
| push_to_hub_model_id = None, | |
| push_to_hub_organization = None, | |
| push_to_hub_token = None, | |
| mp_parameters = '', | |
| auto_find_batch_size = False, | |
| full_determinism = False, | |
| torchdynamo = None, | |
| ray_scope = 'last', | |
| ddp_timeout = 1800, | |
| torch_compile = False, | |
| torch_compile_backend = None, | |
| torch_compile_mode = None, | |
| include_tokens_per_second = False, | |
| include_num_input_tokens_seen = False, | |
| neftune_noise_alpha = None, | |
| optim_target_modules = None, | |
| batch_eval_metrics = False, | |
| eval_on_start = False, | |
| use_liger_kernel = False, | |
| eval_use_gather_object = False, | |
| average_tokens_across_devices = False, | |
| model_init_kwargs = None, | |
| ref_model_init_kwargs = None, | |
| model_adapter_name = None, | |
| ref_adapter_name = None, | |
| force_use_ref_model = False, | |
| disable_dropout = True, | |
| use_logits_to_keep = False, | |
| dataset_num_proc = None, | |
| padding_value = None, | |
| label_pad_token_id = -100, | |
| max_prompt_length = 512, | |
| max_completion_length = None, | |
| max_length = 1024, | |
| truncation_mode = 'keep_end', | |
| padding_free = False, | |
| precompute_ref_log_probs = False, | |
| precompute_ref_batch_size = None, | |
| tools = None, | |
| loss_type = 'sigmoid', | |
| beta = 0.1, | |
| f_alpha_divergence_coef = 1.0, | |
| reference_free = False, | |
| label_smoothing = 0.0, | |
| use_weighting = False, | |
| rpo_alpha = None, | |
| discopop_tau = 0.05, | |
| sync_ref_model = False, | |
| ref_model_mixup_alpha = 0.9, | |
| ref_model_sync_steps = 64, | |
| generate_during_eval = False, | |
| use_num_logits_to_keep = False, | |
| vllm_sampling_params = None, | |
| unsloth_num_chunks = -1, | |
| **kwargs, | |
| ): | |
| if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
| if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
| if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
| output_dir = 'unsloth_training_checkpoints' | |
| save_strategy = 'no' | |
| if dataset_num_proc is None: | |
| from multiprocessing import cpu_count | |
| dataset_num_proc = cpu_count() | |
| super().__init__( | |
| output_dir = output_dir, | |
| overwrite_output_dir = overwrite_output_dir, | |
| do_train = do_train, | |
| do_eval = do_eval, | |
| do_predict = do_predict, | |
| eval_strategy = eval_strategy, | |
| prediction_loss_only = prediction_loss_only, | |
| per_device_train_batch_size = per_device_train_batch_size, | |
| per_device_eval_batch_size = per_device_eval_batch_size, | |
| per_gpu_train_batch_size = per_gpu_train_batch_size, | |
| per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
| gradient_accumulation_steps = gradient_accumulation_steps, | |
| eval_accumulation_steps = eval_accumulation_steps, | |
| eval_delay = eval_delay, | |
| torch_empty_cache_steps = torch_empty_cache_steps, | |
| learning_rate = learning_rate, | |
| weight_decay = weight_decay, | |
| adam_beta1 = adam_beta1, | |
| adam_beta2 = adam_beta2, | |
| adam_epsilon = adam_epsilon, | |
| max_grad_norm = max_grad_norm, | |
| num_train_epochs = num_train_epochs, | |
| max_steps = max_steps, | |
| lr_scheduler_type = lr_scheduler_type, | |
| warmup_ratio = warmup_ratio, | |
| warmup_steps = warmup_steps, | |
| log_level = log_level, | |
| log_level_replica = log_level_replica, | |
| log_on_each_node = log_on_each_node, | |
| logging_dir = logging_dir, | |
| logging_strategy = logging_strategy, | |
| logging_first_step = logging_first_step, | |
| logging_steps = logging_steps, | |
| logging_nan_inf_filter = logging_nan_inf_filter, | |
| save_strategy = save_strategy, | |
| save_steps = save_steps, | |
| save_total_limit = save_total_limit, | |
| save_safetensors = save_safetensors, | |
| save_on_each_node = save_on_each_node, | |
| save_only_model = save_only_model, | |
| restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
| no_cuda = no_cuda, | |
| use_cpu = use_cpu, | |
| use_mps_device = use_mps_device, | |
| seed = seed, | |
| data_seed = data_seed, | |
| jit_mode_eval = jit_mode_eval, | |
| use_ipex = use_ipex, | |
| bf16 = bf16, | |
| fp16 = fp16, | |
| fp16_opt_level = fp16_opt_level, | |
| half_precision_backend = half_precision_backend, | |
| bf16_full_eval = bf16_full_eval, | |
| fp16_full_eval = fp16_full_eval, | |
| tf32 = tf32, | |
| local_rank = local_rank, | |
| ddp_backend = ddp_backend, | |
| tpu_num_cores = tpu_num_cores, | |
| tpu_metrics_debug = tpu_metrics_debug, | |
| debug = debug, | |
| dataloader_drop_last = dataloader_drop_last, | |
| eval_steps = eval_steps, | |
| dataloader_num_workers = dataloader_num_workers, | |
| dataloader_prefetch_factor = dataloader_prefetch_factor, | |
| past_index = past_index, | |
| run_name = run_name, | |
| disable_tqdm = disable_tqdm, | |
| remove_unused_columns = remove_unused_columns, | |
| label_names = label_names, | |
| load_best_model_at_end = load_best_model_at_end, | |
| metric_for_best_model = metric_for_best_model, | |
| greater_is_better = greater_is_better, | |
| ignore_data_skip = ignore_data_skip, | |
| fsdp = fsdp, | |
| fsdp_min_num_params = fsdp_min_num_params, | |
| fsdp_config = fsdp_config, | |
| tp_size = tp_size, | |
| fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
| accelerator_config = accelerator_config, | |
| deepspeed = deepspeed, | |
| label_smoothing_factor = label_smoothing_factor, | |
| optim = optim, | |
| optim_args = optim_args, | |
| adafactor = adafactor, | |
| group_by_length = group_by_length, | |
| length_column_name = length_column_name, | |
| report_to = report_to, | |
| ddp_find_unused_parameters = ddp_find_unused_parameters, | |
| ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
| ddp_broadcast_buffers = ddp_broadcast_buffers, | |
| dataloader_pin_memory = dataloader_pin_memory, | |
| dataloader_persistent_workers = dataloader_persistent_workers, | |
| skip_memory_metrics = skip_memory_metrics, | |
| use_legacy_prediction_loop = use_legacy_prediction_loop, | |
| push_to_hub = push_to_hub, | |
| resume_from_checkpoint = resume_from_checkpoint, | |
| hub_model_id = hub_model_id, | |
| hub_strategy = hub_strategy, | |
| hub_token = hub_token, | |
| hub_private_repo = hub_private_repo, | |
| hub_always_push = hub_always_push, | |
| gradient_checkpointing = gradient_checkpointing, | |
| gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
| include_inputs_for_metrics = include_inputs_for_metrics, | |
| eval_do_concat_batches = eval_do_concat_batches, | |
| fp16_backend = fp16_backend, | |
| push_to_hub_model_id = push_to_hub_model_id, | |
| push_to_hub_organization = push_to_hub_organization, | |
| push_to_hub_token = push_to_hub_token, | |
| mp_parameters = mp_parameters, | |
| auto_find_batch_size = auto_find_batch_size, | |
| full_determinism = full_determinism, | |
| torchdynamo = torchdynamo, | |
| ray_scope = ray_scope, | |
| ddp_timeout = ddp_timeout, | |
| torch_compile = torch_compile, | |
| torch_compile_backend = torch_compile_backend, | |
| torch_compile_mode = torch_compile_mode, | |
| include_tokens_per_second = include_tokens_per_second, | |
| include_num_input_tokens_seen = include_num_input_tokens_seen, | |
| neftune_noise_alpha = neftune_noise_alpha, | |
| optim_target_modules = optim_target_modules, | |
| batch_eval_metrics = batch_eval_metrics, | |
| eval_on_start = eval_on_start, | |
| use_liger_kernel = use_liger_kernel, | |
| eval_use_gather_object = eval_use_gather_object, | |
| average_tokens_across_devices = average_tokens_across_devices, | |
| model_init_kwargs = model_init_kwargs, | |
| ref_model_init_kwargs = ref_model_init_kwargs, | |
| model_adapter_name = model_adapter_name, | |
| ref_adapter_name = ref_adapter_name, | |
| force_use_ref_model = force_use_ref_model, | |
| disable_dropout = disable_dropout, | |
| use_logits_to_keep = use_logits_to_keep, | |
| dataset_num_proc = dataset_num_proc, | |
| padding_value = padding_value, | |
| label_pad_token_id = label_pad_token_id, | |
| max_prompt_length = max_prompt_length, | |
| max_completion_length = max_completion_length, | |
| max_length = max_length, | |
| truncation_mode = truncation_mode, | |
| padding_free = padding_free, | |
| precompute_ref_log_probs = precompute_ref_log_probs, | |
| precompute_ref_batch_size = precompute_ref_batch_size, | |
| tools = tools, | |
| loss_type = loss_type, | |
| beta = beta, | |
| f_alpha_divergence_coef = f_alpha_divergence_coef, | |
| reference_free = reference_free, | |
| label_smoothing = label_smoothing, | |
| use_weighting = use_weighting, | |
| rpo_alpha = rpo_alpha, | |
| discopop_tau = discopop_tau, | |
| sync_ref_model = sync_ref_model, | |
| ref_model_mixup_alpha = ref_model_mixup_alpha, | |
| ref_model_sync_steps = ref_model_sync_steps, | |
| generate_during_eval = generate_during_eval, | |
| use_num_logits_to_keep = use_num_logits_to_keep,**kwargs) | |
| self.vllm_sampling_params = vllm_sampling_params | |
| self.unsloth_num_chunks = unsloth_num_chunks | |
| pass | |
| class _UnslothDPOTrainer(Trainer): | |
| r"""""" | |
| _tag_names = ["trl", "dpo"] | |
| def __init__( | |
| self, | |
| model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, | |
| ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, | |
| args: Optional[DPOConfig] = None, | |
| data_collator: Optional[DataCollator] = None, | |
| train_dataset: Optional[Dataset] = None, | |
| eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
| processing_class: Optional[ | |
| Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
| ] = None, | |
| model_init: Optional[Callable[[], PreTrainedModel]] = None, | |
| compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, | |
| callbacks: Optional[list[TrainerCallback]] = None, | |
| optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
| preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
| peft_config: Optional[dict] = None, | |
| ): | |
| if model is None: | |
| raise ValueError("No model provided. Please provide a model to train.") | |
| if not isinstance(model, str) and ref_model is model: | |
| raise ValueError( | |
| "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " | |
| "same as `model`, you must mass a copy of it, or `None` if you use peft." | |
| ) | |
| if args.model_init_kwargs is None: | |
| model_init_kwargs = {} | |
| elif not isinstance(model, str): | |
| raise ValueError( | |
| "You passed model_init_kwargs to the DPOTrainer/DPOConfig, but your model is already instantiated." | |
| ) | |
| else: | |
| model_init_kwargs = args.model_init_kwargs | |
| torch_dtype = model_init_kwargs.get("torch_dtype") | |
| if torch_dtype is not None: | |
| # Convert to `torch.dtype` if an str is passed | |
| if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
| torch_dtype = getattr(torch, torch_dtype) | |
| if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
| raise ValueError( | |
| f"Invalid `torch_dtype` passed to the DPOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
| ) | |
| model_init_kwargs["torch_dtype"] = torch_dtype | |
| if args.ref_model_init_kwargs is None: | |
| ref_model_init_kwargs = {} | |
| elif not isinstance(ref_model, str): | |
| raise ValueError( | |
| "You passed ref_model_init_kwargs to the DPOTrainer/DPOConfig, but your ref_model is already instantiated." | |
| ) | |
| else: | |
| ref_model_init_kwargs = args.ref_model_init_kwargs | |
| torch_dtype = ref_model_init_kwargs.get("torch_dtype") | |
| if torch_dtype is not None: | |
| # Convert to `torch.dtype` if an str is passed | |
| if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
| torch_dtype = getattr(torch, torch_dtype) | |
| if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
| raise ValueError( | |
| f"Invalid `torch_dtype` passed to the DPOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
| ) | |
| ref_model_init_kwargs["torch_dtype"] = torch_dtype | |
| if isinstance(model, str): | |
| model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) | |
| if isinstance(ref_model, str): | |
| ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs) | |
| # Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16` | |
| # has been called in order to properly call autocast if needed. | |
| self._peft_has_been_casted_to_bf16 = False | |
| if not is_peft_available() and peft_config is not None: | |
| raise ValueError( | |
| "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" | |
| ) | |
| elif is_peft_available() and peft_config is not None: | |
| # if model is a peft model and we have a peft_config, we merge and unload it first | |
| if isinstance(model, PeftModel): | |
| model = model.merge_and_unload() | |
| if ref_model is not None and not args.force_use_ref_model: | |
| raise ValueError( | |
| "You passed both a ref_model and a peft_config. For training PEFT adapters with DPO there is no need to pass a reference" | |
| " model. Please pass `ref_model=None` in case you want to train PEFT adapters, or pass a ref_model with `force_use_ref_model=True` in DPOTrainer's init." | |
| " if you want to use a different ref_model." | |
| ) | |
| if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): | |
| _support_gc_kwargs = hasattr( | |
| args, "gradient_checkpointing_kwargs" | |
| ) and "gradient_checkpointing_kwargs" in list( | |
| inspect.signature(prepare_model_for_kbit_training).parameters | |
| ) | |
| prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} | |
| if _support_gc_kwargs: | |
| prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs | |
| model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
| elif getattr(args, "gradient_checkpointing", False): | |
| # For backward compatibility with older versions of transformers | |
| if hasattr(model, "enable_input_require_grads"): | |
| model.enable_input_require_grads() | |
| else: | |
| def make_inputs_require_grad(module, input, output): | |
| output.requires_grad_(True) | |
| model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
| # get peft model with the given config | |
| model = model | |
| if args.bf16 and getattr(model, "is_loaded_in_4bit", False): | |
| peft_module_casting_to_bf16(model) | |
| # If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager | |
| self._peft_has_been_casted_to_bf16 = True | |
| # For models that use gradient_checkpointing, we need to attach a hook that enables input | |
| # to explicitly have `requires_grad=True`, otherwise training will either silently | |
| # fail or completely fail. | |
| elif getattr(args, "gradient_checkpointing", False): | |
| # For backward compatibility with older versions of transformers | |
| if hasattr(model, "enable_input_require_grads"): | |
| model.enable_input_require_grads() | |
| else: | |
| def make_inputs_require_grad(module, input, output): | |
| output.requires_grad_(True) | |
| model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
| if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): | |
| raise ValueError( | |
| "`generate_during_eval=True` requires Weights and Biases or Comet to be installed." | |
| " Please install `wandb` or `comet-ml` to resolve." | |
| ) | |
| self.is_encoder_decoder = model.config.is_encoder_decoder | |
| self.is_vision_model = model.config.model_type in MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys() | |
| self.is_peft_model = is_peft_available() and isinstance(model, PeftModel) | |
| self.model_adapter_name = args.model_adapter_name | |
| self.ref_adapter_name = args.ref_adapter_name | |
| self.reference_free = args.reference_free | |
| if ref_model: | |
| self.ref_model = ref_model | |
| elif self.is_peft_model or args.precompute_ref_log_probs: | |
| # The `model` with adapters turned off will be used as the reference model | |
| self.ref_model = None | |
| else: | |
| self.ref_model = create_reference_model(model) | |
| if processing_class is None: | |
| raise ValueError("processing_class must be specified to tokenize a DPO dataset.") | |
| if args.padding_value is not None: | |
| self.padding_value = args.padding_value | |
| else: | |
| if hasattr(processing_class, "pad_token_id") and processing_class.pad_token_id is not None: | |
| self.padding_value = processing_class.pad_token_id | |
| elif hasattr(processing_class, "tokenizer") and processing_class.tokenizer.pad_token_id is not None: | |
| self.padding_value = processing_class.tokenizer.pad_token_id | |
| else: | |
| raise ValueError( | |
| "`padding_value` is not specified in `DPOConfig`, and `pad_token_id` is missing in the " | |
| "`processing_class`. Please either set the `padding_value` argument in `DPOConfig`, or set " | |
| "`tokenizer.pad_token` (e.g., `tokenizer.pad_token = tokenizer.eos_token`) before instantiating " | |
| "the trainer." | |
| ) | |
| if data_collator is None: | |
| data_collator = DataCollatorForPreference(pad_token_id=self.padding_value) | |
| # Disable dropout in the model and reference model | |
| if args.disable_dropout: | |
| disable_dropout_in_model(model) | |
| if self.ref_model is not None: | |
| disable_dropout_in_model(self.ref_model) | |
| self.generate_during_eval = args.generate_during_eval | |
| self.label_pad_token_id = args.label_pad_token_id | |
| self.max_prompt_length = args.max_prompt_length | |
| self.max_completion_length = args.max_completion_length | |
| self.max_length = args.max_length | |
| self.truncation_mode = args.truncation_mode | |
| self.precompute_ref_log_probs = args.precompute_ref_log_probs | |
| self.use_logits_to_keep = args.use_logits_to_keep | |
| if args.padding_free: | |
| if model.config._attn_implementation != "flash_attention_2": | |
| warnings.warn( | |
| "Padding-free training is enabled, but the attention implementation is not set to " | |
| "'flash_attention_2'. Padding-free training flattens batches into a single sequence, and " | |
| "'flash_attention_2' is the only known attention mechanism that reliably supports this. Using " | |
| "other implementations may lead to unexpected behavior. To ensure compatibility, set " | |
| "`attn_implementation='flash_attention_2'` in the model configuration, or verify that your " | |
| "attention mechanism can handle flattened sequences." | |
| ) | |
| self.padding_free = args.padding_free | |
| # Since ref_logs are precomputed on the first call to get_train/eval_dataloader | |
| # keep track of first called to avoid computation of future calls | |
| self._precomputed_train_ref_log_probs = False | |
| self._precomputed_eval_ref_log_probs = False | |
| if ( | |
| args.loss_type in ["hinge", "ipo", "bco_pair", "sppo_hard", "nca_pair", "apo_zero", "apo_down"] | |
| and args.label_smoothing > 0 | |
| ): | |
| warnings.warn( | |
| f"You are using the {args.loss_type} loss type that does not support label smoothing. The " | |
| "`label_smoothing` parameter will be ignored. Set `label_smoothing` to `0.0` to remove this warning.", | |
| UserWarning, | |
| ) | |
| if args.loss_type == "kto_pair": | |
| raise ValueError("Support for kto_pair has been removed in DPOTrainer. Please use KTOTrainer.") | |
| self.beta = args.beta | |
| self.label_smoothing = args.label_smoothing | |
| self.loss_type = args.loss_type | |
| self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) | |
| self.use_weighting = args.use_weighting | |
| self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) | |
| if self.aux_loss_enabled and self.aux_loss_coef == 0.0: | |
| warnings.warn( | |
| "You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " | |
| "`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " | |
| "greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " | |
| "loss.", | |
| UserWarning, | |
| ) | |
| self._stored_metrics = defaultdict(lambda: defaultdict(list)) | |
| self.f_divergence_type = args.f_divergence_type | |
| self.f_divergence_params = {FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY: args.f_alpha_divergence_coef} | |
| self.dataset_num_proc = args.dataset_num_proc | |
| # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
| # input tensor associated with the key "input_ids". However, in DPO, the sampled data does not include the | |
| # "input_ids" key. Instead, the available keys are "prompt_input_ids", "chosen_input_ids", and | |
| # "rejected_input_ids". As a result, the trainer issues the warning: "Could not estimate the number of tokens | |
| # of the input, floating-point operations will not be computed." To suppress this warning, we set the | |
| # "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate | |
| # that the warning has already been issued. | |
| model.warnings_issued["estimate_tokens"] = True | |
| # Dataset preparation | |
| train_dataset = self._prepare_dataset(train_dataset, processing_class, args, "train") | |
| if eval_dataset is not None: | |
| if isinstance(eval_dataset, dict): | |
| eval_dataset = { | |
| key: self._prepare_dataset(dataset, processing_class, args, key) | |
| for key, dataset in eval_dataset.items() | |
| } | |
| else: | |
| eval_dataset = self._prepare_dataset(eval_dataset, processing_class, args, "eval") | |
| super().__init__( | |
| model=model, | |
| args=args, | |
| data_collator=data_collator, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| processing_class=processing_class, | |
| model_init=model_init, | |
| compute_metrics=compute_metrics, | |
| callbacks=callbacks, | |
| optimizers=optimizers, | |
| preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
| ) | |
| # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the | |
| # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set | |
| # self.model_accepts_loss_kwargs to False to enable scaling. | |
| self.model_accepts_loss_kwargs = False | |
| # Add tags for models that have been loaded with the correct transformers version | |
| if hasattr(self.model, "add_model_tags"): | |
| self.model.add_model_tags(self._tag_names) | |
| if not hasattr(self, "accelerator"): | |
| raise AttributeError( | |
| "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." | |
| ) | |
| # Deepspeed Zero-3 does not support precompute_ref_log_probs | |
| if self.is_deepspeed_enabled: | |
| if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs: | |
| raise ValueError( | |
| "You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`." | |
| ) | |
| if self.ref_model is None: | |
| if not (self.is_peft_model or self.precompute_ref_log_probs): | |
| raise ValueError( | |
| "No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`" | |
| ) | |
| if args.sync_ref_model: | |
| raise ValueError( | |
| "You currently cannot use `ref_model=None` with TR-DPO method. Please provide `ref_model`." | |
| ) | |
| else: | |
| if self.is_deepspeed_enabled: | |
| self.ref_model = self._prepare_deepspeed(self.ref_model) | |
| else: | |
| self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) | |
| if args.sync_ref_model: | |
| if self.precompute_ref_log_probs: | |
| raise ValueError( | |
| "You cannot use `precompute_ref_log_probs=True` with TR-DPO method. Please set `precompute_ref_log_probs=False`." | |
| ) | |
| self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator)) | |
| if self.loss_type == "bco_pair": | |
| self.running = RunningMoments(self.accelerator) | |
| def _prepare_dataset( | |
| self, | |
| dataset: Union[Dataset, IterableDataset], | |
| processing_class: Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin], | |
| args: DPOConfig, | |
| dataset_name: str, | |
| ) -> Union[Dataset, IterableDataset]: | |
| # Build the kwargs for the `map` function | |
| map_kwargs = {"writer_batch_size": 10} | |
| if isinstance(dataset, Dataset): # IterableDataset does not support num_proc | |
| map_kwargs["num_proc"] = args.dataset_num_proc | |
| with PartialState().local_main_process_first(): | |
| # Extract prompt if needed | |
| if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc` | |
| map_kwargs["desc"] = f"Extracting prompt in {dataset_name} dataset" | |
| dataset = dataset.map(maybe_extract_prompt, **map_kwargs) | |
| # Apply the chat template if needed | |
| if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc` | |
| map_kwargs["desc"] = f"Applying chat template to {dataset_name} dataset" | |
| dataset = dataset.map( | |
| maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class, "tools": args.tools}, **map_kwargs | |
| ) | |
| # Tokenize the dataset | |
| if isinstance(dataset, Dataset): # `IterableDataset.map` does not support `desc` | |
| map_kwargs["desc"] = f"Tokenizing {dataset_name} dataset" | |
| dataset = dataset.map( | |
| self.tokenize_row if not self.is_vision_model else self.process_row, | |
| remove_columns=["prompt", "chosen", "rejected"], | |
| fn_kwargs={ | |
| "processing_class": processing_class, | |
| "max_prompt_length": args.max_prompt_length, | |
| "max_completion_length": args.max_completion_length, | |
| # for enc-dec, we add the special tokens ([bos_token] + prompt + [eos_token]; completion + [eos_token]) | |
| "add_special_tokens": False, | |
| }, | |
| **map_kwargs, | |
| ) | |
| return dataset | |
| def tokenize_row(features, processing_class, max_prompt_length, max_completion_length, add_special_tokens): | |
| """ | |
| Tokenize a row of the dataset. | |
| Args: | |
| features (`dict[str, str]`): | |
| Row of the dataset, should contain the keys `"prompt"`, `"chosen"`, and `"rejected"`. | |
| processing_class (`PreTrainedTokenizerBase`): | |
| Processing class used to process the data. | |
| max_prompt_length (`int` or `None`): | |
| Maximum length of the prompt sequence. If `None`, the prompt sequence is not truncated. | |
| max_completion_length (`int` or `None`): | |
| Maximum length of the completion sequences. If `None`, the completion sequences are not truncated. | |
| add_special_tokens (`bool`): | |
| Whether to add special tokens to the sequences. Typically used for encoder-decoder models. If `True`, | |
| the prompt sequence will have a bos token prepended and an eos token appended. In any case, the | |
| completion sequences will have an eos token appended. | |
| Returns: | |
| `dict[str, list[int]]`: | |
| Tokenized sequences with the keys `"prompt_input_ids"`, `"chosen_input_ids"`, and | |
| `"rejected_input_ids". | |
| Example: | |
| ```python | |
| >>> from transformers import GPT2Tokenizer | |
| >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
| >>> features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"} | |
| >>> DPOTrainer.tokenize_row( | |
| ... features, tokenizer, max_prompt_length=3, max_completion_length=3, add_special_tokens=False | |
| ... ) | |
| {'prompt_input_ids': [464, 6766, 318], 'chosen_input_ids': [4171, 50256], 'rejected_input_ids': [4077, 50256]} | |
| ``` | |
| """ | |
| tokenizer = processing_class # the processing class is a tokenizer | |
| prompt_input_ids = tokenizer(features["prompt"], add_special_tokens=False)["input_ids"] | |
| chosen_input_ids = tokenizer(features["chosen"], add_special_tokens=False)["input_ids"] | |
| rejected_input_ids = tokenizer(features["rejected"], add_special_tokens=False)["input_ids"] | |
| # Add special tokens (typically for encoder-decoder models) | |
| if add_special_tokens: | |
| if tokenizer.bos_token_id is not None: | |
| prompt_input_ids = [tokenizer.bos_token_id] + prompt_input_ids | |
| if tokenizer.eos_token_id is not None: | |
| prompt_input_ids = prompt_input_ids + [tokenizer.eos_token_id] | |
| chosen_input_ids = chosen_input_ids + [tokenizer.eos_token_id] | |
| rejected_input_ids = rejected_input_ids + [tokenizer.eos_token_id] | |
| # Truncate prompt and completion sequences | |
| if max_prompt_length is not None: | |
| prompt_input_ids = prompt_input_ids[-max_prompt_length:] | |
| if max_completion_length is not None: | |
| chosen_input_ids = chosen_input_ids[:max_completion_length] | |
| rejected_input_ids = rejected_input_ids[:max_completion_length] | |
| return { | |
| "prompt_input_ids": prompt_input_ids, | |
| "chosen_input_ids": chosen_input_ids, | |
| "rejected_input_ids": rejected_input_ids, | |
| } | |
| def process_row(features, processing_class, max_prompt_length, max_completion_length, add_special_tokens): | |
| """ | |
| Same as `tokenize_row` but for vision models. Please refer to `tokenize_row` for more information. | |
| """ | |
| processor, tokenizer = processing_class, processing_class.tokenizer # the processing class is a processor | |
| processed_features = processor(images=features["images"], text=features["prompt"], add_special_tokens=False) | |
| prompt_input_ids = processed_features["input_ids"][0] | |
| pixel_values = processed_features["pixel_values"][0] | |
| chosen_input_ids = tokenizer(features["chosen"], add_special_tokens=False)["input_ids"] | |
| rejected_input_ids = tokenizer(features["rejected"], add_special_tokens=False)["input_ids"] | |
| # Add special tokens (typically for encoder-decoder models) | |
| if add_special_tokens: | |
| if tokenizer.bos_token_id is not None: | |
| prompt_input_ids = [tokenizer.bos_token_id] + prompt_input_ids | |
| if tokenizer.eos_token_id is not None: | |
| prompt_input_ids = prompt_input_ids + [tokenizer.eos_token_id] | |
| chosen_input_ids = chosen_input_ids + [tokenizer.eos_token_id] | |
| rejected_input_ids = rejected_input_ids + [tokenizer.eos_token_id] | |
| # Truncate prompt and completion sequences | |
| if max_prompt_length is not None: | |
| prompt_input_ids = prompt_input_ids[-max_prompt_length:] | |
| if max_completion_length is not None: | |
| chosen_input_ids = chosen_input_ids[:max_completion_length] | |
| rejected_input_ids = rejected_input_ids[:max_completion_length] | |
| output = { | |
| "prompt_input_ids": prompt_input_ids, | |
| "pixel_values": pixel_values, | |
| "chosen_input_ids": chosen_input_ids, | |
| "rejected_input_ids": rejected_input_ids, | |
| } | |
| if "pixel_attention_mask" in processed_features: | |
| output["pixel_attention_mask"] = processed_features["pixel_attention_mask"][0] | |
| if "image_sizes" in processed_features: | |
| output["image_sizes"] = processed_features["image_sizes"][0] | |
| return output | |
| def _prepare_deepspeed(self, model: PreTrainedModelWrapper): | |
| # Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473 | |
| deepspeed_plugin = self.accelerator.state.deepspeed_plugin | |
| config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config) | |
| if model is not None: | |
| if hasattr(model, "config"): | |
| hidden_size = ( | |
| max(model.config.hidden_sizes) | |
| if getattr(model.config, "hidden_sizes", None) | |
| else getattr(model.config, "hidden_size", None) | |
| ) | |
| if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3: | |
| # Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0` | |
| # This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081 | |
| config_kwargs.update( | |
| { | |
| "zero_optimization.reduce_bucket_size": hidden_size * hidden_size, | |
| "zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, | |
| "zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, | |
| } | |
| ) | |
| # If ZeRO-3 is used, we shard both the active and reference model. | |
| # Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0) | |
| if config_kwargs["zero_optimization"]["stage"] != 3: | |
| config_kwargs["zero_optimization"]["stage"] = 0 | |
| model, *_ = deepspeed.initialize(model=model, config=config_kwargs) | |
| model.eval() | |
| return model | |
| def _set_signature_columns_if_needed(self): | |
| # If `self.args.remove_unused_columns` is True, non-signature columns are removed. | |
| # By default, this method sets `self._signature_columns` to the model's expected inputs. | |
| # In DPOTrainer, we preprocess data, so using the model's signature columns doesn't work. | |
| # Instead, we set them to the columns expected by `DataCollatorForPreference`, hence the override. | |
| if self._signature_columns is None: | |
| self._signature_columns = [ | |
| "prompt_input_ids", | |
| "chosen_input_ids", | |
| "rejected_input_ids", | |
| "image_sizes", | |
| "ref_chosen_logps", | |
| "ref_rejected_logps", | |
| ] | |
| def get_train_dataloader(self) -> DataLoader: | |
| """ | |
| Returns the training [`~torch.utils.data.DataLoader`]. | |
| Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`. | |
| """ | |
| if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs: | |
| batch_size = self.args.precompute_ref_batch_size or self.args.per_device_train_batch_size | |
| dataloader_params = { | |
| "batch_size": batch_size, | |
| "collate_fn": self.data_collator, | |
| "num_workers": self.args.dataloader_num_workers, | |
| "pin_memory": self.args.dataloader_pin_memory, | |
| "shuffle": False, | |
| } | |
| # prepare dataloader | |
| data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params)) | |
| ref_chosen_logps = [] | |
| ref_rejected_logps = [] | |
| for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"): | |
| ref_chosen_logp, ref_rejected_logp = self.compute_ref_log_probs(padded_batch) | |
| ref_chosen_logp, ref_rejected_logp = self.accelerator.gather_for_metrics( | |
| (ref_chosen_logp, ref_rejected_logp) | |
| ) | |
| ref_chosen_logps.append(ref_chosen_logp.cpu()) | |
| ref_rejected_logps.append(ref_rejected_logp.cpu()) | |
| # Unnecessary cache clearing to avoid OOM | |
| empty_cache() | |
| self.accelerator.free_memory() | |
| all_ref_chosen_logps = torch.cat(ref_chosen_logps).float().numpy() | |
| all_ref_rejected_logps = torch.cat(ref_rejected_logps).float().numpy() | |
| self.train_dataset = self.train_dataset.add_column(name="ref_chosen_logps", column=all_ref_chosen_logps) | |
| self.train_dataset = self.train_dataset.add_column( | |
| name="ref_rejected_logps", column=all_ref_rejected_logps | |
| ) | |
| self._precomputed_train_ref_log_probs = True | |
| return super().get_train_dataloader() | |
| def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: | |
| """ | |
| Returns the evaluation [`~torch.utils.data.DataLoader`]. | |
| Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`. | |
| Args: | |
| eval_dataset (`torch.utils.data.Dataset`, *optional*): | |
| If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted | |
| by the `model.forward()` method are automatically removed. It must implement `__len__`. | |
| """ | |
| if eval_dataset is None and self.eval_dataset is None: | |
| raise ValueError("Trainer: evaluation requires an eval_dataset.") | |
| eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset | |
| if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs: | |
| batch_size = self.args.precompute_ref_batch_size or self.args.per_device_eval_batch_size | |
| dataloader_params = { | |
| "batch_size": batch_size, | |
| "collate_fn": self.data_collator, | |
| "num_workers": self.args.dataloader_num_workers, | |
| "pin_memory": self.args.dataloader_pin_memory, | |
| "shuffle": False, | |
| } | |
| # prepare dataloader | |
| data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params)) | |
| ref_chosen_logps = [] | |
| ref_rejected_logps = [] | |
| for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"): | |
| ref_chosen_logp, ref_rejected_logp = self.compute_ref_log_probs(padded_batch) | |
| ref_chosen_logp, ref_rejected_logp = self.accelerator.gather_for_metrics( | |
| (ref_chosen_logp, ref_rejected_logp) | |
| ) | |
| ref_chosen_logps.append(ref_chosen_logp.cpu()) | |
| ref_rejected_logps.append(ref_rejected_logp.cpu()) | |
| all_ref_chosen_logps = torch.cat(ref_chosen_logps).float().numpy() | |
| all_ref_rejected_logps = torch.cat(ref_rejected_logps).float().numpy() | |
| eval_dataset = eval_dataset.add_column(name="ref_chosen_logps", column=all_ref_chosen_logps) | |
| eval_dataset = eval_dataset.add_column(name="ref_rejected_logps", column=all_ref_rejected_logps) | |
| # Save calculated ref_chosen_logps and ref_rejected_logps to the eval_dataset for subsequent runs | |
| if self.eval_dataset is not None: | |
| self.eval_dataset = eval_dataset | |
| self._precomputed_eval_ref_log_probs = True | |
| return super().get_eval_dataloader(eval_dataset=eval_dataset) | |
| def null_ref_context(self): | |
| """Context manager for handling null reference model (that is, peft adapter manipulation).""" | |
| with ( | |
| self.accelerator.unwrap_model(self.model).disable_adapter() | |
| if self.is_peft_model and not self.ref_adapter_name | |
| else nullcontext() | |
| ): | |
| if self.ref_adapter_name: | |
| self.model.set_adapter(self.ref_adapter_name) | |
| yield | |
| if self.ref_adapter_name: | |
| self.model.set_adapter(self.model_adapter_name or "default") | |
| def compute_ref_log_probs(self, batch: dict[str, torch.LongTensor]) -> dict: | |
| """Computes log probabilities of the reference model for a single padded batch of a DPO specific dataset.""" | |
| device_type = "xpu" if is_torch_xpu_available() else "cuda" | |
| compte_ref_context_manager = amp.autocast(device_type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
| with torch.no_grad(), compte_ref_context_manager: | |
| if self.ref_model is None: | |
| with self.null_ref_context(): | |
| ref_model_output = self.concatenated_forward(self.model, batch) | |
| else: | |
| ref_model_output = self.concatenated_forward(self.ref_model, batch) | |
| return ref_model_output["chosen_logps"], ref_model_output["rejected_logps"] | |
| def concatenated_inputs( | |
| batch: dict[str, Union[list, torch.LongTensor]], padding_value: int | |
| ) -> dict[str, torch.LongTensor]: | |
| """ | |
| Concatenate the `chosen` and `rejected` inputs from the batch into a single tensor for both the prompt | |
| and completion sequences. | |
| Args: | |
| batch (`dict[str, Union[list, torch.LongTensor]]`): | |
| A batch of input data. The batch must contain the following keys: | |
| - `"prompt_input_ids"`: Tensor of shape `(batch_size, prompt_length)` representing the prompt input IDs. | |
| - `"chosen_input_ids"`: Tensor of shape `(batch_size, chosen_length)` representing the chosen completion input IDs. | |
| - `"rejected_input_ids"`: Tensor of shape `(batch_size, rejected_length)` representing the rejected completion input IDs. | |
| - `"prompt_pixel_values"` (optional): Tensor for pixel values, if available. | |
| - `"prompt_pixel_attention_mask"` (optional): Tensor for pixel attention masks, if available. | |
| padding_value (`int`): | |
| The padding value to use for the concatenated completion sequences (`chosen_input_ids` and | |
| `rejected_input_ids`). | |
| Returns: | |
| `dict[str, torch.LongTensor]`: A dictionary containing: | |
| - `"prompt_input_ids"`: Concatenated prompt input IDs of shape `(2 * batch_size, prompt_length)`. | |
| - `"completion_input_ids"`: Concatenated chosen and rejected completion input IDs of shape `(2 * batch_size, max_completion_length)`. | |
| - `"prompt_attention_mask"`: Concatenated prompt attention masks of shape `(2 * batch_size, prompt_length)`. | |
| - `"completion_attention_mask"`: Concatenated chosen and rejected attention masks of shape `(2 * batch_size, max_completion_length)`. | |
| - `"pixel_values"` (optional): Concatenated pixel values if `"prompt_pixel_values"` are present. | |
| - `"pixel_attention_mask"` (optional): Concatenated pixel attention masks if `"prompt_pixel_attention_mask"` are present. | |
| Notes: | |
| The completion input IDs and attention masks are padded to the maximum completion length of the chosen | |
| or rejected sequences. | |
| """ | |
| output = {} | |
| # For the prompt, the input_ids are the same for both the chosen and rejected responses | |
| output["prompt_input_ids"] = torch.cat([batch["prompt_input_ids"], batch["prompt_input_ids"]], dim=0) | |
| output["prompt_attention_mask"] = torch.cat( | |
| [batch["prompt_attention_mask"], batch["prompt_attention_mask"]], dim=0 | |
| ) | |
| if "pixel_values" in batch: | |
| output["pixel_values"] = torch.cat([batch["pixel_values"], batch["pixel_values"]], dim=0) | |
| if "pixel_attention_mask" in batch: | |
| output["pixel_attention_mask"] = torch.cat( | |
| [batch["pixel_attention_mask"], batch["pixel_attention_mask"]], dim=0 | |
| ) | |
| if "image_sizes" in batch: | |
| output["image_sizes"] = torch.cat([batch["image_sizes"], batch["image_sizes"]], dim=0) | |
| # Concatenate the chosen and rejected completions | |
| max_completion_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1]) | |
| output["completion_input_ids"] = torch.cat( | |
| ( | |
| pad_to_length(batch["chosen_input_ids"], max_completion_length, pad_value=padding_value), | |
| pad_to_length(batch["rejected_input_ids"], max_completion_length, pad_value=padding_value), | |
| ), | |
| ) | |
| output["completion_attention_mask"] = torch.cat( | |
| ( | |
| pad_to_length(batch["chosen_attention_mask"], max_completion_length, pad_value=0), | |
| pad_to_length(batch["rejected_attention_mask"], max_completion_length, pad_value=0), | |
| ), | |
| ) | |
| return output | |
| def dpo_loss( | |
| self, | |
| chosen_logps: torch.FloatTensor, | |
| rejected_logps: torch.FloatTensor, | |
| ref_chosen_logps: torch.FloatTensor, | |
| ref_rejected_logps: torch.FloatTensor, | |
| ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
| """ | |
| Compute the DPO loss for a batch of policy and reference model log probabilities. | |
| Args: | |
| chosen_logps (`torch.FloatTensor`): | |
| Log probabilities of the model for the chosen responses. Shape: `(batch_size,)`. | |
| rejected_logps (`torch.FloatTensor`): | |
| Log probabilities of the model for the rejected responses. Shape: `(batch_size,)`. | |
| ref_chosen_logps (`torch.FloatTensor`): | |
| Log probabilities of the reference model for the chosen responses. Shape: `(batch_size,)`. | |
| ref_rejected_logps (`torch.FloatTensor`): | |
| Log probabilities of the reference model for the rejected responses. Shape: `(batch_size,)`. | |
| Returns: | |
| A tuple of three tensors: `(losses, chosen_rewards, rejected_rewards)`. | |
| The losses tensor contains the DPO loss for each example in the batch. | |
| The `chosen_rewards` and `rejected_rewards` tensors contain the rewards for the chosen and rejected | |
| responses, respectively. | |
| """ | |
| device = self.accelerator.device | |
| # Get the log ratios for the chosen and rejected responses | |
| chosen_logratios = chosen_logps.to(device) - (not self.reference_free) * ref_chosen_logps.to(device) | |
| rejected_logratios = rejected_logps.to(device) - (not self.reference_free) * ref_rejected_logps.to(device) | |
| if self.f_divergence_type == FDivergenceType.ALPHA_DIVERGENCE.value: | |
| # The alpha-divergence formula: (1 - u^-alpha) / alpha | |
| # The divergence difference between the chosen and rejected sample is: | |
| # (1 - u[w]^-alpha) / alpha - (1 - u[l]^-alpha) / alpha | |
| # = (u[l]^-alpha - u[w]^-alpha) / alpha | |
| # where u[w] and u[l] are the policy/reference probability ratios | |
| # for the chosen and rejected samples, respectively. | |
| alpha_coef = FDivergenceConstants.ALPHA_DIVERGENCE_COEF_DEFAULT | |
| if self.f_divergence_params and FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY in self.f_divergence_params: | |
| alpha_coef = float(self.f_divergence_params[FDivergenceConstants.ALPHA_DIVERGENCE_COEF_KEY]) | |
| logits = (cap_exp(rejected_logratios * -alpha_coef) - cap_exp(chosen_logratios * -alpha_coef)) / alpha_coef | |
| else: | |
| logratios = chosen_logps - rejected_logps | |
| if self.reference_free: | |
| ref_logratios = torch.tensor([0], dtype=logratios.dtype, device=logratios.device) | |
| else: | |
| ref_logratios = ref_chosen_logps - ref_rejected_logps | |
| logratios = logratios.to(self.accelerator.device) | |
| ref_logratios = ref_logratios.to(self.accelerator.device) | |
| logits = logratios - ref_logratios | |
| if self.f_divergence_type == FDivergenceType.JS_DIVERGENCE.value: | |
| # The js-divergence formula: log(2 * u / (1 + u)) | |
| # The divergence difference between the chosen and rejected sample is: | |
| # log(2 * u[w] / (1 + u[w])) - log(2 * u[l] / (1 + u[l])) | |
| # = log(u[w]) - log(u[l]) - (log(1 + u[w]) - log(1 + u[l])) | |
| # where u[w] and u[l] are the policy/reference probability ratios | |
| # for the chosen and rejected samples, respectively. | |
| logits -= F.softplus(chosen_logratios) - F.softplus(rejected_logratios) | |
| # The beta is a temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5. | |
| # We ignore the reference model as beta -> 0. The label_smoothing parameter encodes our uncertainty about the | |
| # labels and calculates a conservative DPO loss. | |
| if self.loss_type == "sigmoid": | |
| losses = ( | |
| -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing) | |
| - F.logsigmoid(-self.beta * logits) * self.label_smoothing | |
| ) | |
| elif self.loss_type == "robust": | |
| losses = ( | |
| -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing) | |
| + F.logsigmoid(-self.beta * logits) * self.label_smoothing | |
| ) / (1 - 2 * self.label_smoothing) | |
| elif self.loss_type == "exo_pair": | |
| # eqn (16) of the EXO paper: https://huggingface.co/papers/2402.00856 | |
| import math | |
| if self.label_smoothing == 0: | |
| self.label_smoothing = 1e-3 | |
| losses = (self.beta * logits).sigmoid() * ( | |
| F.logsigmoid(self.beta * logits) - math.log(1 - self.label_smoothing) | |
| ) + (-self.beta * logits).sigmoid() * (F.logsigmoid(-self.beta * logits) - math.log(self.label_smoothing)) | |
| elif self.loss_type == "hinge": | |
| losses = torch.relu(1 - self.beta * logits) | |
| elif self.loss_type == "ipo": | |
| # eqn (17) of the paper where beta is the regularization parameter for the IPO loss, denoted by tau in the paper. | |
| losses = (logits - 1 / (2 * self.beta)) ** 2 | |
| elif self.loss_type == "bco_pair": | |
| chosen_logratios = chosen_logps - ref_chosen_logps | |
| rejected_logratios = rejected_logps - ref_rejected_logps | |
| chosen_rewards = self.beta * chosen_logratios | |
| rejected_rewards = self.beta * rejected_logratios | |
| rewards = torch.cat((chosen_rewards, rejected_rewards), 0).mean().detach() | |
| self.running.update(rewards) | |
| delta = self.running.mean | |
| losses = -F.logsigmoid((self.beta * chosen_logratios) - delta) - F.logsigmoid( | |
| -(self.beta * rejected_logratios - delta) | |
| ) | |
| elif self.loss_type == "sppo_hard": | |
| # In the paper (https://huggingface.co/papers/2405.00675), SPPO employs a soft probability approach, | |
| # estimated using the PairRM score. The probability calculation is conducted outside of the trainer class. | |
| # The version described here is the hard probability version, where P in Equation (4.7) of Algorithm 1 is | |
| # set to 1 for the winner and 0 for the loser. | |
| a = chosen_logps - ref_chosen_logps | |
| b = rejected_logps - ref_rejected_logps | |
| losses = (a - 0.5 / self.beta) ** 2 + (b + 0.5 / self.beta) ** 2 | |
| elif self.loss_type == "nca_pair": | |
| chosen_rewards = (chosen_logps - ref_chosen_logps) * self.beta | |
| rejected_rewards = (rejected_logps - ref_rejected_logps) * self.beta | |
| losses = ( | |
| -F.logsigmoid(chosen_rewards) | |
| - 0.5 * F.logsigmoid(-chosen_rewards) | |
| - 0.5 * F.logsigmoid(-rejected_rewards) | |
| ) | |
| elif self.loss_type == "aot_pair": | |
| chosen_logratios = chosen_logps - ref_chosen_logps | |
| rejected_logratios = rejected_logps - ref_rejected_logps | |
| chosen_logratios_sorted, _ = torch.sort(chosen_logratios, dim=0) | |
| rejected_logratios_sorted, _ = torch.sort(rejected_logratios, dim=0) | |
| delta = chosen_logratios_sorted - rejected_logratios_sorted | |
| losses = ( | |
| -F.logsigmoid(self.beta * delta) * (1 - self.label_smoothing) | |
| - F.logsigmoid(-self.beta * delta) * self.label_smoothing | |
| ) | |
| elif self.loss_type == "aot": | |
| logratios = chosen_logps - rejected_logps | |
| ref_logratios = ref_chosen_logps - ref_rejected_logps | |
| logratios_sorted, _ = torch.sort(logratios, dim=0) | |
| ref_logratios_sorted, _ = torch.sort(ref_logratios, dim=0) | |
| delta = logratios_sorted - ref_logratios_sorted | |
| losses = ( | |
| -F.logsigmoid(self.beta * delta) * (1 - self.label_smoothing) | |
| - F.logsigmoid(-self.beta * delta) * self.label_smoothing | |
| ) | |
| elif self.loss_type == "apo_zero": | |
| # Eqn (7) of the APO paper (https://huggingface.co/papers/2408.06266) | |
| # Use this loss when you believe the chosen outputs are better than your model's default output | |
| losses_chosen = 1 - F.sigmoid(self.beta * chosen_logratios) # Increase chosen likelihood | |
| losses_rejected = F.sigmoid(self.beta * rejected_logratios) # Decrease rejected likelihood | |
| losses = losses_chosen + losses_rejected | |
| elif self.loss_type == "apo_down": | |
| # Eqn (8) of the APO paper (https://huggingface.co/papers/2408.06266) | |
| # Use this loss when you believe the chosen outputs are worse than your model's default output. | |
| # Decrease chosen likelihood and decrease rejected likelihood more | |
| losses_chosen = F.sigmoid(self.beta * chosen_logratios) | |
| losses_rejected = 1 - F.sigmoid(self.beta * (chosen_logratios - rejected_logratios)) | |
| losses = losses_chosen + losses_rejected | |
| elif self.loss_type == "discopop": | |
| # Eqn (5) of the DiscoPOP paper (https://huggingface.co/papers/2406.08414) | |
| # This loss was discovered with LLM discovery | |
| logratios = chosen_logps - rejected_logps | |
| ref_logratios = ref_chosen_logps - ref_rejected_logps | |
| logits = logratios - ref_logratios | |
| logits = logits * self.beta | |
| # Modulate the mixing coefficient based on the log ratio magnitudes | |
| log_ratio_modulation = torch.sigmoid(logits / self.args.discopop_tau) | |
| logistic_component = -F.logsigmoid(logits) | |
| exp_component = torch.exp(-logits) | |
| # Blend between logistic and exponential component based on log ratio modulation | |
| losses = logistic_component * (1 - log_ratio_modulation) + exp_component * log_ratio_modulation | |
| else: | |
| raise ValueError( | |
| f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge', 'ipo', 'exo_pair', " | |
| "'nca_pair', 'robust', 'bco_pair', 'sppo_hard', 'aot', 'aot_pair', 'discopop', 'apo_zero', 'apo_down']" | |
| ) | |
| chosen_rewards = self.beta * (chosen_logps.to(device) - ref_chosen_logps.to(device)).detach() | |
| rejected_rewards = self.beta * (rejected_logps.to(device) - ref_rejected_logps.to(device)).detach() | |
| return losses, chosen_rewards, rejected_rewards | |
| def concatenated_forward(self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]]): | |
| """Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together. | |
| We do this to avoid doing two forward passes, because it's faster for FSDP. | |
| """ | |
| num_examples = batch["prompt_input_ids"].shape[0] | |
| concatenated_batch = self.concatenated_inputs(batch, padding_value=self.padding_value) | |
| model_kwargs = {} | |
| if self.aux_loss_enabled: | |
| model_kwargs["output_router_logits"] = True | |
| # Add the pixel values and attention masks for vision models | |
| if "pixel_values" in concatenated_batch: | |
| model_kwargs["pixel_values"] = concatenated_batch["pixel_values"] | |
| if "pixel_attention_mask" in concatenated_batch: | |
| model_kwargs["pixel_attention_mask"] = concatenated_batch["pixel_attention_mask"] | |
| if "image_sizes" in concatenated_batch: | |
| model_kwargs["image_sizes"] = concatenated_batch["image_sizes"] | |
| prompt_input_ids = concatenated_batch["prompt_input_ids"] | |
| prompt_attention_mask = concatenated_batch["prompt_attention_mask"] | |
| completion_input_ids = concatenated_batch["completion_input_ids"] | |
| completion_attention_mask = concatenated_batch["completion_attention_mask"] | |
| if self.is_encoder_decoder: | |
| labels = completion_input_ids | |
| labels[completion_attention_mask == 0] = self.label_pad_token_id | |
| outputs = model( | |
| input_ids=prompt_input_ids, | |
| attention_mask=prompt_attention_mask, | |
| labels=labels, # we need the labels for the logits to be returned | |
| **model_kwargs, | |
| ) | |
| logits = outputs.logits | |
| loss_mask = completion_attention_mask.bool() | |
| else: | |
| # Concatenate the prompt and completion inputs | |
| input_ids = torch.cat((prompt_input_ids, completion_input_ids), dim=1) | |
| attention_mask = torch.cat((prompt_attention_mask, completion_attention_mask), dim=1) | |
| # Mask the prompt but not the completion for the loss | |
| loss_mask = torch.cat( | |
| (torch.zeros_like(prompt_attention_mask), completion_attention_mask), | |
| dim=1, | |
| ) | |
| # Flush left to reduce the memory usage | |
| # [[0, 0, x, x, x, x], -> [[x, x, x, x], | |
| # [0, x, x, x, 0, 0]] [x, x, x, 0]] | |
| attention_mask, input_ids, loss_mask = flush_left(attention_mask, input_ids, loss_mask) | |
| # Truncate right | |
| if self.max_length is not None: | |
| if self.truncation_mode == "keep_end": | |
| input_ids = input_ids[:, -self.max_length :] | |
| attention_mask = attention_mask[:, -self.max_length :] | |
| loss_mask = loss_mask[:, -self.max_length :] | |
| elif self.truncation_mode == "keep_start": | |
| input_ids = input_ids[:, : self.max_length] | |
| attention_mask = attention_mask[:, : self.max_length] | |
| loss_mask = loss_mask[:, : self.max_length] | |
| else: | |
| raise ValueError( | |
| f"Unknown truncation mode: '{self.truncation_mode}'. Should be one of ['keep_end', " | |
| "'keep_start']." | |
| ) | |
| if self.use_logits_to_keep: | |
| # Compute logits_to_keep based on loss_mask pattern: | |
| # [[0, 0, 0, x, x, x, x], | |
| # [0, 0, 0, x, x, x, 0]] | |
| # ^ start computing logits from here ([:, -(7-3+1):]) | |
| first_compute_index = loss_mask.nonzero(as_tuple=True)[1].min() | |
| logits_to_keep = (loss_mask.shape[1] - first_compute_index).item() + 1 # +1 for the first label | |
| model_kwargs["logits_to_keep"] = logits_to_keep | |
| if self.padding_free: | |
| # Flatten the input_ids, position_ids, and loss_mask | |
| # input_ids = [[a, b, c, 0], -> input_ids = [[a, b, c, d, e, f, g]] | |
| # [d, e, f, g]] position_ids = [[0, 1, 2, 0, 1, 2, 3]] | |
| input_ids = input_ids[attention_mask.bool()].unsqueeze(0) | |
| loss_mask = loss_mask[attention_mask.bool()].unsqueeze(0) | |
| position_ids = attention_mask.cumsum(1)[attention_mask.bool()].unsqueeze(0) - 1 | |
| model_kwargs["position_ids"] = position_ids | |
| else: | |
| model_kwargs["attention_mask"] = attention_mask | |
| outputs = model(input_ids, **model_kwargs) | |
| logits = outputs.logits | |
| # Offset the logits by one to align with the labels | |
| labels = torch.roll(input_ids, shifts=-1, dims=1) | |
| loss_mask = torch.roll(loss_mask, shifts=-1, dims=1).bool() | |
| if self.use_logits_to_keep: | |
| # Align labels with logits | |
| # logits: -, -, [x2, x3, x4, x5, x6] | |
| # ^ --------- ^ after logits[:, :-1, :] | |
| # labels: [y0, y1, y2, y3, y4, y5, y6] | |
| # ^ --------- ^ with logits_to_keep=4, [:, -4:] | |
| # loss_mask: [0, 0, 0, 1, 1, 1, 1] | |
| labels = labels[:, -logits_to_keep:] | |
| loss_mask = loss_mask[:, -logits_to_keep:] | |
| if logits.shape[:2] != labels.shape[:2]: | |
| # for llava, the returned logits include the image tokens (placed before the text tokens) | |
| seq_len = labels.shape[1] | |
| logits = logits[:, -seq_len:] | |
| # Compute the log probabilities of the labels | |
| labels[~loss_mask] = 0 # dummy token; we'll ignore the losses on these tokens later | |
| per_token_logps = selective_log_softmax(logits, labels) | |
| per_token_logps[~loss_mask] = 0 | |
| per_token_logps = torch.roll(per_token_logps, shifts=1, dims=1) | |
| if self.padding_free: | |
| # Unflatten the per_token_logps (shape: [1, sum_seq_len] -> [batch_size, seq_len]) | |
| batch_size, seq_len = attention_mask.shape | |
| per_token_logps_ = torch.zeros( | |
| batch_size, seq_len, device=outputs.logits.device, dtype=outputs.logits.dtype | |
| ) | |
| per_token_logps_[attention_mask.bool()] = per_token_logps | |
| per_token_logps = per_token_logps_ | |
| all_logps = per_token_logps.sum(-1) | |
| output = {} | |
| if self.use_weighting: | |
| with torch.no_grad(): | |
| # Eq (2) of the WPO paper: https://huggingface.co/papers/2406.11827 | |
| logprobs = F.log_softmax(logits, dim=-1) | |
| weights_adjustment_factor = torch.logsumexp(2 * logprobs, dim=-1) # same as sum(probs**2) in log space | |
| per_token_logps_adjusted = per_token_logps - weights_adjustment_factor | |
| all_weights = (per_token_logps_adjusted * loss_mask).sum(-1) / loss_mask.sum(-1) | |
| chosen_weights = all_weights[:num_examples] | |
| rejected_weights = all_weights[num_examples:] | |
| output["policy_weights"] = torch.clamp(torch.exp(chosen_weights + rejected_weights), max=1) | |
| if self.args.rpo_alpha is not None: | |
| # Only use the chosen logits for the RPO loss | |
| chosen_logits = logits[:num_examples] | |
| chosen_labels = labels[:num_examples] | |
| # Compute the log probabilities of the labels | |
| output["nll_loss"] = F.cross_entropy( | |
| torch.flatten(chosen_logits, end_dim=1), torch.flatten(chosen_labels, end_dim=1), ignore_index=0 | |
| ) | |
| if self.loss_type == "ipo": | |
| all_logps = all_logps / loss_mask.sum(-1) | |
| output["chosen_logps"] = all_logps[:num_examples] | |
| output["rejected_logps"] = all_logps[num_examples:] | |
| # Compute the mean logits | |
| if self.padding_free: | |
| # position_ids contains a sequence of range identifiers (e.g., [[0, 1, 2, 0, 1, 2, 3, ...]]). | |
| # There are 2*num_examples ranges in total: the first half corresponds to the chosen tokens, | |
| # and the second half to the rejected tokens. | |
| # To find the start of the rejected tokens, we look for the num_examples+1-th zero in pos_id. | |
| split_idx = (position_ids == 0).nonzero(as_tuple=True)[1][num_examples] | |
| mean_chosen_logits = logits[0, :split_idx][loss_mask[0, :split_idx]].mean() | |
| mean_rejected_logits = logits[0, split_idx:][loss_mask[0, split_idx:]].mean() | |
| else: | |
| mean_chosen_logits = logits[:num_examples][loss_mask[:num_examples]].mean() | |
| mean_rejected_logits = logits[num_examples:][loss_mask[num_examples:]].mean() | |
| output["mean_chosen_logits"] = mean_chosen_logits | |
| output["mean_rejected_logits"] = mean_rejected_logits | |
| if self.aux_loss_enabled: | |
| output["aux_loss"] = outputs.aux_loss | |
| return output | |
| def get_batch_loss_metrics( | |
| self, | |
| model, | |
| batch: dict[str, Union[list, torch.LongTensor]], | |
| train_eval: Literal["train", "eval"] = "train", | |
| ): | |
| """Compute the DPO loss and other metrics for the given batch of inputs for train or test.""" | |
| metrics = {} | |
| model_output = self.concatenated_forward(model, batch) | |
| # if ref_chosen_logps and ref_rejected_logps in batch use them, otherwise use the reference model | |
| if "ref_chosen_logps" in batch and "ref_rejected_logps" in batch: | |
| ref_chosen_logps = batch["ref_chosen_logps"] | |
| ref_rejected_logps = batch["ref_rejected_logps"] | |
| else: | |
| ref_chosen_logps, ref_rejected_logps = self.compute_ref_log_probs(batch) | |
| losses, chosen_rewards, rejected_rewards = self.dpo_loss( | |
| model_output["chosen_logps"], model_output["rejected_logps"], ref_chosen_logps, ref_rejected_logps | |
| ) | |
| reward_accuracies = (chosen_rewards > rejected_rewards).float() | |
| if self.args.rpo_alpha is not None: | |
| losses = losses + self.args.rpo_alpha * model_output["nll_loss"] # RPO loss from V3 of the paper | |
| if self.use_weighting: | |
| losses = losses * model_output["policy_weights"] | |
| if self.aux_loss_enabled: | |
| losses = losses + self.aux_loss_coef * model_output["aux_loss"] | |
| prefix = "eval_" if train_eval == "eval" else "" | |
| metrics[f"{prefix}rewards/chosen"] = self.accelerator.gather_for_metrics(chosen_rewards).mean().item() | |
| metrics[f"{prefix}rewards/rejected"] = self.accelerator.gather_for_metrics(rejected_rewards).mean().item() | |
| metrics[f"{prefix}rewards/accuracies"] = self.accelerator.gather_for_metrics(reward_accuracies).mean().item() | |
| metrics[f"{prefix}rewards/margins"] = ( | |
| self.accelerator.gather_for_metrics(chosen_rewards - rejected_rewards).mean().item() | |
| ) | |
| metrics[f"{prefix}logps/chosen"] = ( | |
| self.accelerator.gather_for_metrics(model_output["chosen_logps"]).detach().mean().item() | |
| ) | |
| metrics[f"{prefix}logps/rejected"] = ( | |
| self.accelerator.gather_for_metrics(model_output["rejected_logps"]).detach().mean().item() | |
| ) | |
| metrics[f"{prefix}logits/chosen"] = ( | |
| self.accelerator.gather_for_metrics(model_output["mean_chosen_logits"]).detach().mean().item() | |
| ) | |
| metrics[f"{prefix}logits/rejected"] = ( | |
| self.accelerator.gather_for_metrics(model_output["mean_rejected_logits"]).detach().mean().item() | |
| ) | |
| if self.args.rpo_alpha is not None: | |
| metrics[f"{prefix}nll_loss"] = ( | |
| self.accelerator.gather_for_metrics(model_output["nll_loss"]).detach().mean().item() | |
| ) | |
| if self.aux_loss_enabled: | |
| metrics[f"{prefix}aux_loss"] = ( | |
| self.accelerator.gather_for_metrics(model_output["aux_loss"]).detach().mean().item() | |
| ) | |
| return losses.mean(), metrics | |
| def compute_loss( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module], | |
| inputs: dict[str, Union[torch.Tensor, Any]], | |
| return_outputs=False, | |
| num_items_in_batch=None, | |
| ) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: | |
| device_type = "xpu" if is_torch_xpu_available() else "cuda" | |
| compute_loss_context_manager = ( | |
| amp.autocast(device_type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
| ) | |
| with compute_loss_context_manager: | |
| loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train") | |
| # Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class: | |
| loss = loss.to(self.args.device) | |
| # force log the metrics | |
| self.store_metrics(metrics, train_eval="train") | |
| if return_outputs: | |
| return loss, metrics | |
| return loss | |
| def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]: | |
| """Generate samples from the model and reference model for the given batch of inputs.""" | |
| # If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with | |
| # the torch amp context manager as some hidden states are silently casted to full precision. | |
| device_type = "xpu" if is_torch_xpu_available() else "cuda" | |
| generate_context_manager = amp.autocast(device_type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
| with generate_context_manager: | |
| policy_output = model.generate( | |
| input_ids=batch["prompt_input_ids"], | |
| attention_mask=batch["prompt_attention_mask"], | |
| max_length=self.max_length, | |
| do_sample=True, | |
| pad_token_id=self.padding_value, | |
| ) | |
| # if ref_output in batch use that otherwise use the reference model | |
| if "ref_output" in batch: | |
| ref_output = batch["ref_output"] | |
| else: | |
| if self.ref_model is None: | |
| with self.null_ref_context(): | |
| ref_output = self.model.generate( | |
| input_ids=batch["prompt_input_ids"], | |
| attention_mask=batch["prompt_attention_mask"], | |
| max_length=self.max_length, | |
| do_sample=True, | |
| pad_token_id=self.padding_value, | |
| ) | |
| else: | |
| ref_output = self.ref_model.generate( | |
| input_ids=batch["prompt_input_ids"], | |
| attention_mask=batch["prompt_attention_mask"], | |
| max_length=self.max_length, | |
| do_sample=True, | |
| pad_token_id=self.padding_value, | |
| ) | |
| policy_output = pad_to_length(policy_output, self.max_length, self.padding_value) | |
| policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) | |
| ref_output = pad_to_length(ref_output, self.max_length, self.padding_value) | |
| ref_output_decoded = self.processing_class.batch_decode(ref_output, skip_special_tokens=True) | |
| return policy_output_decoded, ref_output_decoded | |
| def prediction_step( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module], | |
| inputs: dict[str, Union[torch.Tensor, Any]], | |
| prediction_loss_only: bool, | |
| ignore_keys: Optional[list[str]] = None, | |
| ): | |
| if ignore_keys is None: | |
| if hasattr(model, "config"): | |
| ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) | |
| else: | |
| ignore_keys = [] | |
| device_type = "xpu" if is_torch_xpu_available() else "cuda" | |
| prediction_context_manager = amp.autocast(device_type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
| with torch.no_grad(), prediction_context_manager: | |
| loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval") | |
| # force log the metrics | |
| self.store_metrics(metrics, train_eval="eval") | |
| if prediction_loss_only: | |
| return loss.detach(), None, None | |
| # logits for the chosen and rejected samples from model | |
| logits_dict = { | |
| "eval_logits/chosen": metrics["eval_logits/chosen"], | |
| "eval_logits/rejected": metrics["eval_logits/rejected"], | |
| } | |
| logits = tuple(v.unsqueeze(dim=0) for k, v in logits_dict.items() if k not in ignore_keys) | |
| logits = torch.stack(logits).mean(axis=1).to(self.accelerator.device) | |
| labels = torch.zeros(logits.shape[0], device=self.accelerator.device) | |
| return (loss.detach(), logits, labels) | |
| def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: | |
| for key, value in metrics.items(): | |
| self._stored_metrics[train_eval][key].append(value) | |
| def evaluation_loop( | |
| self, | |
| dataloader: DataLoader, | |
| description: str, | |
| prediction_loss_only: Optional[bool] = None, | |
| ignore_keys: Optional[list[str]] = None, | |
| metric_key_prefix: str = "eval", | |
| ) -> EvalLoopOutput: | |
| """ | |
| Overriding built-in evaluation loop to store metrics for each batch. | |
| Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`. | |
| Works both with or without labels. | |
| """ | |
| # Sample and save to game log if requested (for one batch to save time) | |
| if self.generate_during_eval: | |
| # Generate random indices within the range of the total number of samples | |
| num_samples = len(dataloader.dataset) | |
| random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) | |
| # Use dataloader.dataset.select to get the random batch without iterating over the DataLoader | |
| random_batch_dataset = dataloader.dataset.select(random_indices) | |
| random_batch = self.data_collator(random_batch_dataset) | |
| random_batch = self._prepare_inputs(random_batch) | |
| policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, random_batch) | |
| table = pd.DataFrame( | |
| columns=["Prompt", "Policy", "Ref Model"], | |
| data=[ | |
| [prompt, pol[len(prompt) :], ref[len(prompt) :]] | |
| for prompt, pol, ref in zip( | |
| random_batch_dataset["prompt"], policy_output_decoded, ref_output_decoded | |
| ) | |
| ], | |
| ) | |
| if "wandb" in self.args.report_to: | |
| wandb.log({"game_log": wandb.Table(data=table)}) | |
| if "comet_ml" in self.args.report_to: | |
| log_table_to_comet_experiment( | |
| name="game_log.csv", | |
| table=table, | |
| ) | |
| # Base evaluation | |
| initial_output = super().evaluation_loop( | |
| dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix | |
| ) | |
| return initial_output | |
| def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: | |
| """ | |
| Log `logs` on the various objects watching training, including stored metrics. | |
| Args: | |
| logs (`dict[str, float]`): | |
| The values to log. | |
| start_time (`float` or `None`, *optional*, defaults to `None`): | |
| Start time of the training. | |
| """ | |
| # logs either has 'loss' or 'eval_loss' | |
| train_eval = "train" if "loss" in logs else "eval" | |
| # Add averaged stored metrics to logs | |
| for key, metrics in self._stored_metrics[train_eval].items(): | |
| logs[key] = torch.tensor(metrics).mean().item() | |
| del self._stored_metrics[train_eval] | |
| if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): | |
| return super().log(logs, start_time) | |
| else: # transformers<=4.46 | |
| return super().log(logs) | |
| def create_model_card( | |
| self, | |
| model_name: Optional[str] = None, | |
| dataset_name: Optional[str] = None, | |
| tags: Union[str, list[str], None] = None, | |
| ): | |
| """ | |
| Creates a draft of a model card using the information available to the `Trainer`. | |
| Args: | |
| model_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the model. | |
| dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the dataset used for training. | |
| tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
| Tags to be associated with the model card. | |
| """ | |
| if not self.is_world_process_zero(): | |
| return | |
| if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
| base_model = self.model.config._name_or_path | |
| else: | |
| base_model = None | |
| tags = tags or [] | |
| if isinstance(tags, str): | |
| tags = [tags] | |
| if hasattr(self.model.config, "unsloth_version"): | |
| tags.append("unsloth") | |
| citation = textwrap.dedent( | |
| """\ | |
| @inproceedings{rafailov2023direct, | |
| title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, | |
| author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, | |
| year = 2023, | |
| booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, | |
| url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, | |
| editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, | |
| }""" | |
| ) | |
| model_card = generate_model_card( | |
| base_model=base_model, | |
| model_name=model_name, | |
| hub_model_id=self.hub_model_id, | |
| dataset_name=dataset_name, | |
| tags=tags, | |
| wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
| comet_url=get_comet_experiment_url(), | |
| trainer_name="DPO", | |
| trainer_citation=citation, | |
| paper_title="Direct Preference Optimization: Your Language Model is Secretly a Reward Model", | |
| paper_id="2305.18290", | |
| ) | |
| model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
| class UnslothDPOTrainer(_UnslothDPOTrainer): | |
| """ | |
| Initialize DPOTrainer. | |
| Args: | |
| model (`transformers.PreTrainedModel`): | |
| The model to train, preferably an `AutoModelForSequenceClassification`. | |
| ref_model (`PreTrainedModelWrapper`): | |
| Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no | |
| reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. | |
| args (`DPOConfig`): | |
| The DPO config arguments to use for training. | |
| data_collator (`transformers.DataCollator`): | |
| The data collator to use for training. If None is specified, the default data collator (`DataCollatorForPreference`) will be used | |
| which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
| train_dataset (`datasets.Dataset`): | |
| The dataset to use for training. | |
| eval_dataset (`datasets.Dataset`): | |
| The dataset to use for evaluation. | |
| processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
| Processing class used to process the data. If provided, will be used to automatically process the inputs | |
| for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
| reuse the fine-tuned model. | |
| This supercedes the `tokenizer` argument, which is now deprecated. | |
| model_init (`Callable[[], transformers.PreTrainedModel]`): | |
| The model initializer to use for training. If None is specified, the default model initializer will be used. | |
| compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
| The function to use to compute the metrics. Must take a `EvalPrediction` and return | |
| a dictionary string to metric values. | |
| callbacks (`list[transformers.TrainerCallback]`): | |
| The callbacks to use for training. | |
| optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
| The optimizer and scheduler to use for training. | |
| preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
| The function to use to preprocess the logits before computing the metrics. | |
| peft_config (`dict`, defaults to `None`): | |
| The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. | |
| """ | |
| def __init__( | |
| self, | |
| model = None, | |
| ref_model = None, | |
| args = None, | |
| data_collator = None, | |
| train_dataset = None, | |
| eval_dataset = None, | |
| processing_class = None, | |
| model_init = None, | |
| compute_metrics = None, | |
| callbacks = None, | |
| preprocess_logits_for_metrics = None, | |
| peft_config = None, | |
| **kwargs | |
| ): | |
| if args is None: args = UnslothDPOConfig() | |
| use_bf16 = getattr(args, 'bf16', False) | |
| use_fp16 = getattr(args, 'fp16', False) | |
| force_float32 = False | |
| if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
| print('Unsloth: Switching to float32 training since model cannot work with float16') | |
| force_float32 = True | |
| mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
| dtype = getattr(model.config, 'torch_dtype', None) | |
| if dtype is None: dtype = model.get_input_embeddings().dtype | |
| from unsloth_zoo.utils import _get_dtype | |
| dtype = _get_dtype(dtype) | |
| float16 = dtype == torch.float16 | |
| if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
| if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
| if force_float32: | |
| args.fp16 = False | |
| args.bf16 = False | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
| elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
| args.fp16 = float16 | |
| args.bf16 = not float16 | |
| os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
| if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
| args.eval_strategy = 'steps' | |
| if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
| ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
| if ga_steps is not None and ga_steps > 1: | |
| from transformers import __version__ as transformers_version | |
| if Version(transformers_version) <= Version('4.45.2'): | |
| print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
| '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
| if getattr(args, 'eval_strategy', 'no') != 'no': | |
| eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
| if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
| if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
| fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
| bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
| if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
| if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
| if force_float32: | |
| args.bf16_full_eval = False | |
| args.fp16_full_eval = False | |
| elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
| args.bf16_full_eval = True | |
| args.fp16_full_eval = False | |
| elif not bf16_full_eval and not fp16_full_eval: | |
| args.bf16_full_eval = args.bf16 | |
| args.fp16_full_eval = args.fp16 | |
| _output_logits = False | |
| if locals().get('compute_metrics', None) is not None: _output_logits = True | |
| if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
| if _output_logits: | |
| os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
| if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
| pass | |
| else: | |
| model_max_seq_length = getattr(model, 'max_seq_length', None) | |
| args_max_seq_length = getattr(args, 'max_seq_length', None) | |
| if args_max_seq_length is None and model_max_seq_length is not None: | |
| max_seq_length = model.max_seq_length | |
| if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
| if model is not None and hasattr(model, 'for_training'): | |
| model.for_training() | |
| if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
| if 'processing_class' in locals(): | |
| if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
| if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
| __tokenizer = processing_class if 'processing_class' in locals() else tokenizer | |
| from unsloth_zoo.vision_utils import UnslothVisionDataCollator | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) | |
| elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer) | |
| else: | |
| if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False | |
| if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' | |
| if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} | |
| if not isinstance(data_collator, UnslothVisionDataCollator): | |
| if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): | |
| if isinstance(data_collator, DataCollatorForSeq2Seq): | |
| data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) | |
| else: | |
| data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) | |
| other_metrics = [] | |
| from unsloth_zoo.logging_utils import PatchRLStatistics | |
| PatchRLStatistics('dpo_trainer', other_metrics) | |
| if hasattr(train_dataset, 'column_names'): | |
| column_names = set(train_dataset.column_names) | |
| check = ['chosen', 'rejected', 'prompt', 'chosen_input_ids', 'chosen_attention_mask', | |
| 'chosen_labels', 'rejected_input_ids', 'rejected_attention_mask', 'rejected_labels', | |
| 'prompt_input_ids', 'prompt_attention_mask'] | |
| if all(x in column_names for x in check): | |
| train_dataset = train_dataset.remove_columns(['chosen', 'rejected', 'prompt']) | |
| del check, column_names | |
| super().__init__( | |
| model = model, | |
| ref_model = ref_model, | |
| args = args, | |
| data_collator = data_collator, | |
| train_dataset = train_dataset, | |
| eval_dataset = eval_dataset, | |
| processing_class = processing_class, | |
| model_init = model_init, | |
| compute_metrics = compute_metrics, | |
| callbacks = callbacks, | |
| preprocess_logits_for_metrics = preprocess_logits_for_metrics, | |
| peft_config = peft_config,**kwargs) | |
| if hasattr(self, 'neftune_hook_handle'): | |
| self.neftune_hook_handle.remove() | |
| if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
| if getattr(args, 'neftune_noise_alpha', None) is not None: | |
| model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
| pass | |
| pass | |