Commit
·
e4a1f31
1
Parent(s):
40e834e
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import fitz # PyMuPDF for parsing PDF
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from sentence_transformers import SentenceTransformer, util
|
| 5 |
+
|
| 6 |
+
# Load a pre-trained SentenceTransformer model
|
| 7 |
+
model_name = "paraphrase-MiniLM-L6-v2" # You can change this to a different model if needed
|
| 8 |
+
model = SentenceTransformer(model_name)
|
| 9 |
+
|
| 10 |
+
# Function to extract text from a PDF file
|
| 11 |
+
def extract_text_from_pdf(pdf_path):
|
| 12 |
+
text = ""
|
| 13 |
+
with fitz.open(pdf_path) as pdf_document:
|
| 14 |
+
for page_num in range(pdf_document.page_count):
|
| 15 |
+
page = pdf_document.load_page(page_num)
|
| 16 |
+
text += page.get_text()
|
| 17 |
+
return text
|
| 18 |
+
|
| 19 |
+
# Function to perform semantic search
|
| 20 |
+
def semantic_search(query, documents, top_k=5):
|
| 21 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 22 |
+
|
| 23 |
+
# Convert the list of documents to embeddings
|
| 24 |
+
document_embeddings = model.encode(documents, convert_to_tensor=True)
|
| 25 |
+
|
| 26 |
+
# Compute cosine similarity scores of query with documents
|
| 27 |
+
cosine_scores = util.pytorch_cos_sim(query_embedding, document_embeddings)
|
| 28 |
+
|
| 29 |
+
# Sort the results in decreasing order
|
| 30 |
+
results = []
|
| 31 |
+
for idx in range(len(cosine_scores)):
|
| 32 |
+
results.append((documents[idx], cosine_scores[idx].item()))
|
| 33 |
+
results = sorted(results, key=lambda x: x[1], reverse=True)
|
| 34 |
+
|
| 35 |
+
return results[:top_k]
|
| 36 |
+
|
| 37 |
+
def main():
|
| 38 |
+
st.title("Semantic Search on PDF Documents")
|
| 39 |
+
|
| 40 |
+
query = st.text_input("Enter your query:")
|
| 41 |
+
pdf_file = st.file_uploader("Upload a PDF file:", type=["pdf"])
|
| 42 |
+
|
| 43 |
+
if st.button("Search"):
|
| 44 |
+
if pdf_file:
|
| 45 |
+
pdf_path = os.path.join("uploads", pdf_file.name)
|
| 46 |
+
with open(pdf_path, "wb") as f:
|
| 47 |
+
f.write(pdf_file.read())
|
| 48 |
+
|
| 49 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
| 50 |
+
search_results = semantic_search(query, [pdf_text])
|
| 51 |
+
os.remove(pdf_path) # Delete the uploaded file after processing
|
| 52 |
+
|
| 53 |
+
st.write(f"Search results for query: '{query}'")
|
| 54 |
+
for i, (result, score) in enumerate(search_results, start=1):
|
| 55 |
+
st.write(f"{i}. Score: {score:.2f}")
|
| 56 |
+
st.write(result)
|
| 57 |
+
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
main()
|