Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,48 +1,22 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
| 3 |
-
import time
|
| 4 |
-
import os
|
| 5 |
|
| 6 |
-
|
| 7 |
-
headers = {"Authorization": "Bearer "+ HF_TOKEN}
|
| 8 |
|
| 9 |
-
# Define the model and tokenizer loading
|
| 10 |
-
def load_model_and_tokenizer():
|
| 11 |
-
try:
|
| 12 |
-
tokenizer = AutoTokenizer.from_pretrained("atlasia/Terjman-Large")
|
| 13 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("atlasia/Terjman-Large")
|
| 14 |
-
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
|
| 15 |
-
return translation_pipeline
|
| 16 |
-
except Exception as e:
|
| 17 |
-
print(f"Error loading model and tokenizer: {e}")
|
| 18 |
-
return None
|
| 19 |
-
|
| 20 |
-
# Load the model and tokenizer once at startup
|
| 21 |
-
model_pipeline = load_model_and_tokenizer()
|
| 22 |
-
|
| 23 |
-
# Define the response function
|
| 24 |
def respond(english_text):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
result = model_pipeline(english_text)
|
| 31 |
-
return result[0]['translation_text']
|
| 32 |
-
except Exception as e:
|
| 33 |
-
if "estimated_time" in str(e):
|
| 34 |
-
time.sleep(5) # Wait for 5 seconds before retrying
|
| 35 |
-
else:
|
| 36 |
-
return f"An error occurred: {e}"
|
| 37 |
|
| 38 |
# Create the Gradio interface
|
| 39 |
-
app = gr.Interface(
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
)
|
| 46 |
|
| 47 |
if __name__ == "__main__":
|
| 48 |
app.launch()
|
|
|
|
| 1 |
+
from gradio_client import Client
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
client = Client("https://15fdee77fc28978c9b.gradio.live/")
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
def respond(english_text):
|
| 7 |
+
darija_translated_text = client.predict(
|
| 8 |
+
text=english_text,
|
| 9 |
+
api_name="/predict"
|
| 10 |
+
)
|
| 11 |
+
return darija_translated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Create the Gradio interface
|
| 14 |
+
app = gr.Interface(fn=respond,
|
| 15 |
+
inputs="text",
|
| 16 |
+
outputs="text",
|
| 17 |
+
title="Terjman-Supreme 👨💻🤯",
|
| 18 |
+
description="Translate English text to Moroccan Darija using our top and biggest model (3.3B) 🤗")
|
| 19 |
+
|
|
|
|
| 20 |
|
| 21 |
if __name__ == "__main__":
|
| 22 |
app.launch()
|