File size: 2,854 Bytes
30ef1d4
 
1557b00
3c739a1
 
 
 
 
 
1557b00
 
 
30ef1d4
 
01090a1
30ef1d4
01090a1
 
30ef1d4
3c73224
 
 
 
7a9fdcc
 
 
 
 
 
 
 
 
 
 
 
3c739a1
7a9fdcc
30ef1d4
 
 
 
 
 
 
 
7a9fdcc
30ef1d4
 
3c73224
 
30ef1d4
 
 
 
33cf987
 
 
 
 
 
01090a1
 
 
33cf987
 
 
 
 
 
 
 
 
 
d56d00d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import spaces
import torch


device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f'[INFO] Using device: {device}')

# token
token = os.environ['TOKEN']

# Load the pretrained model and tokenizer
MODEL_NAME = "BounharAbdelaziz/Al-Atlas-LLM-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # , token=token
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to(device)

# Fix tokenizer padding
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token  # Set pad token

# Predefined examples
examples = [
    ["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
     , 256, 0.7, 0.9, 150, 8, 1.5],
    ["المستقبل ديال الذكاء الصناعي فالمغرب"
     , 256, 0.7, 0.9, 150, 8, 1.5],
    [" المطبخ المغربي"
     , 256, 0.7, 0.9, 150, 8, 1.5],
    ["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم"
     , 256, 0.7, 0.9, 150, 8, 1.5],
]

@spaces.GPU
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    output = model.generate(
        **inputs, 
        max_length=max_length, 
        temperature=temperature, 
        top_p=top_p, 
        do_sample=True,
        repetition_penalty=repetition_penalty,
        num_beams=num_beams,
        top_k= top_k,
        early_stopping = True,
        pad_token_id=tokenizer.pad_token_id,  # Explicit pad token
        eos_token_id=tokenizer.eos_token_id,  # Explicit eos token
    )
    return tokenizer.decode(output[0], skip_special_tokens=True)

if __name__ == "__main__":
    # Create the Gradio interface
    with gr.Blocks() as app:
        gr.Interface(
            fn=generate_text,
            inputs=[
                gr.Textbox(label="Prompt: دخل النص بالدارجة"),
                gr.Slider(8, 4096, value=256, label="Max Length"),
                gr.Slider(0.0, 2, value=0.7, label="Temperature"),
                gr.Slider(0.0, 1.0, value=0.9, label="Top-p"),
                gr.Slider(1, 10000, value=150, label="Top-k"),
                gr.Slider(1, 20, value=8, label="Number of Beams"),
                gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"),
            ],
            outputs=gr.Textbox(label="Generated Text in Moroccan Darija"),
            title="Moroccan Darija LLM",
            description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.",
            examples=examples,
        )
    
    app.launch()