Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,53 @@
|
|
1 |
-
|
|
|
2 |
import torch
|
3 |
-
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
import re
|
7 |
import os
|
8 |
from typing import List, Tuple
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class RiverPollutionAnalyzer:
|
14 |
def __init__(self):
|
15 |
try:
|
16 |
-
# Initialize model
|
17 |
self.processor = InstructBlipProcessor.from_pretrained(
|
18 |
"Salesforce/instructblip-flan-t5-xl",
|
19 |
cache_dir="model_cache"
|
20 |
)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
except Exception as e:
|
31 |
-
self.
|
32 |
self.status = f"β Model loading failed: {str(e)}"
|
33 |
print(self.status)
|
34 |
|
@@ -53,47 +72,49 @@ class RiverPollutionAnalyzer:
|
|
53 |
}
|
54 |
|
55 |
def analyze_image(self, image):
|
56 |
-
"""Analyze river pollution with
|
57 |
-
if not self.
|
58 |
return "Model not loaded. Please check logs."
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
image = image.resize((512, 512))
|
66 |
-
|
67 |
-
prompt = """Analyze this river pollution and list:
|
68 |
-
1. Visible pollutants from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
|
69 |
-
2. Severity estimate (1-10)
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
Pollutants: [comma separated list]
|
73 |
Severity: [number]"""
|
74 |
|
|
|
75 |
inputs = self.processor(
|
76 |
images=image,
|
77 |
text=prompt,
|
78 |
return_tensors="pt"
|
79 |
-
)
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
|
88 |
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
89 |
pollutants, severity = self._parse_response(analysis)
|
90 |
return self._format_analysis(pollutants, severity)
|
91 |
-
|
92 |
except Exception as e:
|
93 |
return f"β οΈ Analysis error: {str(e)}"
|
94 |
|
|
|
95 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
96 |
-
"""
|
97 |
pollutants = []
|
98 |
severity = 3
|
99 |
|
@@ -123,7 +144,7 @@ Severity: [number]"""
|
|
123 |
return pollutants, severity
|
124 |
|
125 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
126 |
-
"""
|
127 |
if not pollutants:
|
128 |
return 1
|
129 |
|
@@ -138,7 +159,7 @@ Severity: [number]"""
|
|
138 |
return min(10, max(1, round(avg_weight * 3)))
|
139 |
|
140 |
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
141 |
-
"""
|
142 |
severity_bar = f"""π Severity: {severity}/10
|
143 |
{"β" * severity}{"β" * (10 - severity)}
|
144 |
{self.severity_descriptions.get(severity, '')}"""
|
@@ -150,6 +171,15 @@ Severity: [number]"""
|
|
150 |
{pollutants_list}
|
151 |
{severity_bar}"""
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
# Initialize analyzer
|
154 |
analyzer = RiverPollutionAnalyzer()
|
155 |
|
@@ -186,9 +216,6 @@ css = """
|
|
186 |
background: #2a2a2a;
|
187 |
border-color: #444;
|
188 |
}
|
189 |
-
.btn-primary {
|
190 |
-
margin-top: 10px;
|
191 |
-
}
|
192 |
"""
|
193 |
|
194 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
@@ -200,15 +227,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
200 |
# Left Panel
|
201 |
with gr.Column(elem_classes="left-panel"):
|
202 |
with gr.Group():
|
203 |
-
image_input = gr.Image(
|
204 |
-
|
205 |
-
label="Upload River Image",
|
206 |
-
height=300
|
207 |
-
)
|
208 |
-
analyze_btn = gr.Button(
|
209 |
-
"π Analyze Pollution",
|
210 |
-
variant="primary"
|
211 |
-
)
|
212 |
|
213 |
with gr.Group(elem_classes="analysis-box"):
|
214 |
gr.Markdown("### π Analysis Report")
|
@@ -217,16 +237,16 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
217 |
# Right Panel
|
218 |
with gr.Column(elem_classes="right-panel"):
|
219 |
with gr.Group(elem_classes="chat-container"):
|
220 |
-
gr.
|
221 |
-
chatbot = gr.Chatbot(height=400)
|
222 |
with gr.Row():
|
223 |
chat_input = gr.Textbox(
|
224 |
-
placeholder="Ask about pollution
|
|
|
225 |
container=False,
|
226 |
scale=5
|
227 |
)
|
228 |
-
chat_btn = gr.Button("
|
229 |
-
clear_btn = gr.Button("Clear Chat", size="sm")
|
230 |
|
231 |
analyze_btn.click(
|
232 |
analyzer.analyze_image,
|
@@ -234,7 +254,20 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
234 |
outputs=analysis_output
|
235 |
)
|
236 |
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
gr.Examples(
|
239 |
examples=[
|
240 |
["examples/polluted_river1.jpg"],
|
@@ -243,7 +276,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
243 |
inputs=image_input,
|
244 |
outputs=analysis_output,
|
245 |
fn=analyzer.analyze_image,
|
246 |
-
cache_examples=
|
247 |
label="Example Images"
|
248 |
)
|
249 |
|
|
|
1 |
+
!pip install -q transformers accelerate bitsandbytes gradio torch pillow
|
2 |
+
|
3 |
import torch
|
4 |
+
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration, BitsAndBytesConfig
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
import re
|
8 |
import os
|
9 |
from typing import List, Tuple
|
10 |
|
11 |
+
# Configuration for 4-bit quantization (if GPU available)
|
12 |
+
quant_config = BitsAndBytesConfig(
|
13 |
+
load_in_4bit=True,
|
14 |
+
bnb_4bit_compute_dtype=torch.float16,
|
15 |
+
bnb_4bit_quant_type="nf4",
|
16 |
+
bnb_4bit_use_double_quant=True
|
17 |
+
)
|
18 |
|
19 |
class RiverPollutionAnalyzer:
|
20 |
def __init__(self):
|
21 |
try:
|
22 |
+
# Initialize model with fallback for CPU
|
23 |
self.processor = InstructBlipProcessor.from_pretrained(
|
24 |
"Salesforce/instructblip-flan-t5-xl",
|
25 |
cache_dir="model_cache"
|
26 |
)
|
27 |
+
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
self.model = InstructBlipForConditionalGeneration.from_pretrained(
|
30 |
+
"Salesforce/instructblip-flan-t5-xl",
|
31 |
+
device_map="auto",
|
32 |
+
quantization_config=quant_config,
|
33 |
+
torch_dtype=torch.float16,
|
34 |
+
cache_dir="model_cache"
|
35 |
+
)
|
36 |
+
self.device = "cuda"
|
37 |
+
self.status = "β
Model loaded (4-bit GPU)"
|
38 |
+
else:
|
39 |
+
self.model = InstructBlipForConditionalGeneration.from_pretrained(
|
40 |
+
"Salesforce/instructblip-flan-t5-xl",
|
41 |
+
device_map="auto",
|
42 |
+
torch_dtype=torch.float32,
|
43 |
+
cache_dir="model_cache",
|
44 |
+
low_cpu_mem_usage=True
|
45 |
+
)
|
46 |
+
self.device = "cpu"
|
47 |
+
self.status = "β οΈ Model loaded (CPU mode - slower)"
|
48 |
+
|
49 |
except Exception as e:
|
50 |
+
self.model = None
|
51 |
self.status = f"β Model loading failed: {str(e)}"
|
52 |
print(self.status)
|
53 |
|
|
|
72 |
}
|
73 |
|
74 |
def analyze_image(self, image):
|
75 |
+
"""Analyze river pollution with device-aware processing"""
|
76 |
+
if not self.model:
|
77 |
return "Model not loaded. Please check logs."
|
78 |
|
79 |
+
if not isinstance(image, Image.Image):
|
80 |
+
image = Image.fromarray(image)
|
81 |
+
|
82 |
+
# Resize for efficiency
|
83 |
+
image = image.resize((512, 512))
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
prompt = """Analyze this river pollution scene and provide:
|
86 |
+
1. List ALL visible pollutants ONLY from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
|
87 |
+
2. Estimate pollution severity from 1-10
|
88 |
+
|
89 |
+
Respond EXACTLY in this format:
|
90 |
Pollutants: [comma separated list]
|
91 |
Severity: [number]"""
|
92 |
|
93 |
+
try:
|
94 |
inputs = self.processor(
|
95 |
images=image,
|
96 |
text=prompt,
|
97 |
return_tensors="pt"
|
98 |
+
).to(self.model.device)
|
99 |
|
100 |
+
with torch.no_grad():
|
101 |
+
outputs = self.model.generate(
|
102 |
+
**inputs,
|
103 |
+
max_new_tokens=150, # Reduced for stability
|
104 |
+
temperature=0.5,
|
105 |
+
top_p=0.85,
|
106 |
+
do_sample=True
|
107 |
+
)
|
108 |
|
109 |
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
110 |
pollutants, severity = self._parse_response(analysis)
|
111 |
return self._format_analysis(pollutants, severity)
|
|
|
112 |
except Exception as e:
|
113 |
return f"β οΈ Analysis error: {str(e)}"
|
114 |
|
115 |
+
# [Keep all existing helper methods unchanged]
|
116 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
117 |
+
"""Same parsing logic as before"""
|
118 |
pollutants = []
|
119 |
severity = 3
|
120 |
|
|
|
144 |
return pollutants, severity
|
145 |
|
146 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
147 |
+
"""Same severity calculation"""
|
148 |
if not pollutants:
|
149 |
return 1
|
150 |
|
|
|
159 |
return min(10, max(1, round(avg_weight * 3)))
|
160 |
|
161 |
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
162 |
+
"""Same formatting"""
|
163 |
severity_bar = f"""π Severity: {severity}/10
|
164 |
{"β" * severity}{"β" * (10 - severity)}
|
165 |
{self.severity_descriptions.get(severity, '')}"""
|
|
|
171 |
{pollutants_list}
|
172 |
{severity_bar}"""
|
173 |
|
174 |
+
def analyze_chat(self, message: str) -> str:
|
175 |
+
"""Handle chat questions"""
|
176 |
+
if any(word in message.lower() for word in ["hello", "hi", "hey"]):
|
177 |
+
return "Hello! I'm a river pollution analyzer. Ask me about pollution types."
|
178 |
+
elif "pollution" in message.lower():
|
179 |
+
return "Common river pollutants: plastic waste, chemical foam, industrial discharge, sewage water, oil spills."
|
180 |
+
else:
|
181 |
+
return "I can answer questions about river pollution. Try asking about pollution types."
|
182 |
+
|
183 |
# Initialize analyzer
|
184 |
analyzer = RiverPollutionAnalyzer()
|
185 |
|
|
|
216 |
background: #2a2a2a;
|
217 |
border-color: #444;
|
218 |
}
|
|
|
|
|
|
|
219 |
"""
|
220 |
|
221 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
|
227 |
# Left Panel
|
228 |
with gr.Column(elem_classes="left-panel"):
|
229 |
with gr.Group():
|
230 |
+
image_input = gr.Image(type="pil", label="Upload River Image", height=300)
|
231 |
+
analyze_btn = gr.Button("π Analyze Pollution", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
with gr.Group(elem_classes="analysis-box"):
|
234 |
gr.Markdown("### π Analysis Report")
|
|
|
237 |
# Right Panel
|
238 |
with gr.Column(elem_classes="right-panel"):
|
239 |
with gr.Group(elem_classes="chat-container"):
|
240 |
+
chatbot = gr.Chatbot(label="Pollution Q&A", height=400)
|
|
|
241 |
with gr.Row():
|
242 |
chat_input = gr.Textbox(
|
243 |
+
placeholder="Ask about pollution sources...",
|
244 |
+
label="Your Question",
|
245 |
container=False,
|
246 |
scale=5
|
247 |
)
|
248 |
+
chat_btn = gr.Button("π¬ Ask", variant="secondary", scale=1)
|
249 |
+
clear_btn = gr.Button("π§Ή Clear Chat", size="sm")
|
250 |
|
251 |
analyze_btn.click(
|
252 |
analyzer.analyze_image,
|
|
|
254 |
outputs=analysis_output
|
255 |
)
|
256 |
|
257 |
+
chat_input.submit(
|
258 |
+
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
259 |
+
inputs=[chat_input, chatbot],
|
260 |
+
outputs=[chat_input, chatbot]
|
261 |
+
)
|
262 |
+
|
263 |
+
chat_btn.click(
|
264 |
+
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
265 |
+
inputs=[chat_input, chatbot],
|
266 |
+
outputs=[chat_input, chatbot]
|
267 |
+
)
|
268 |
+
|
269 |
+
clear_btn.click(lambda: None, outputs=[chatbot])
|
270 |
+
|
271 |
gr.Examples(
|
272 |
examples=[
|
273 |
["examples/polluted_river1.jpg"],
|
|
|
276 |
inputs=image_input,
|
277 |
outputs=analysis_output,
|
278 |
fn=analyzer.analyze_image,
|
279 |
+
cache_examples=torch.cuda.is_available(), # Cache only if GPU available
|
280 |
label="Example Images"
|
281 |
)
|
282 |
|