Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,16 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration, BitsAndBytesConfig
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import re
|
|
|
6 |
from typing import List, Tuple
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
9 |
quant_config = BitsAndBytesConfig(
|
10 |
load_in_4bit=True,
|
11 |
bnb_4bit_compute_dtype=torch.float16,
|
@@ -16,7 +21,7 @@ quant_config = BitsAndBytesConfig(
|
|
16 |
class RiverPollutionAnalyzer:
|
17 |
def __init__(self):
|
18 |
try:
|
19 |
-
#
|
20 |
self.processor = InstructBlipProcessor.from_pretrained(
|
21 |
"Salesforce/instructblip-flan-t5-xl",
|
22 |
cache_dir="model_cache"
|
@@ -28,8 +33,12 @@ class RiverPollutionAnalyzer:
|
|
28 |
torch_dtype=torch.float16,
|
29 |
cache_dir="model_cache"
|
30 |
)
|
|
|
|
|
31 |
except Exception as e:
|
32 |
-
|
|
|
|
|
33 |
|
34 |
self.pollutants = [
|
35 |
"plastic waste", "chemical foam", "industrial discharge",
|
@@ -52,15 +61,17 @@ class RiverPollutionAnalyzer:
|
|
52 |
}
|
53 |
|
54 |
def analyze_image(self, image):
|
55 |
-
|
|
|
|
|
56 |
if not isinstance(image, Image.Image):
|
57 |
image = Image.fromarray(image)
|
58 |
|
59 |
-
prompt = """Analyze this river pollution
|
60 |
-
1.
|
61 |
-
2.
|
62 |
|
63 |
-
Respond EXACTLY
|
64 |
Pollutants: [comma separated list]
|
65 |
Severity: [number]"""
|
66 |
|
@@ -71,22 +82,19 @@ Severity: [number]"""
|
|
71 |
return_tensors="pt"
|
72 |
).to(self.model.device)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
do_sample=True
|
81 |
-
)
|
82 |
|
83 |
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
84 |
pollutants, severity = self._parse_response(analysis)
|
85 |
return self._format_analysis(pollutants, severity)
|
86 |
except Exception as e:
|
87 |
-
return f"β οΈ Analysis
|
88 |
|
89 |
-
# [Keep your existing parsing/formatting methods]
|
90 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
91 |
pollutants = []
|
92 |
severity = 3
|
@@ -96,21 +104,16 @@ Severity: [number]"""
|
|
96 |
r'(?i)(pollutants?|contaminants?)[:\s]*\[?(.*?)(?:\]|Severity|severity|$)',
|
97 |
analysis
|
98 |
)
|
99 |
-
|
100 |
if pollutant_match:
|
101 |
pollutants_str = pollutant_match.group(2).strip()
|
102 |
pollutants = [
|
103 |
-
p.strip().lower()
|
104 |
for p in re.split(r'[,;]|\band\b', pollutants_str)
|
105 |
if p.strip().lower() in self.pollutants
|
106 |
]
|
107 |
|
108 |
# Extract severity
|
109 |
-
severity_match = re.search(
|
110 |
-
r'(?i)(severity|level)[:\s]*(\d{1,2})',
|
111 |
-
analysis
|
112 |
-
)
|
113 |
-
|
114 |
if severity_match:
|
115 |
try:
|
116 |
severity = min(max(int(severity_match.group(2)), 1), 10)
|
@@ -124,14 +127,12 @@ Severity: [number]"""
|
|
124 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
125 |
if not pollutants:
|
126 |
return 1
|
127 |
-
|
128 |
weights = {
|
129 |
"medical waste": 3, "toxic sludge": 3, "oil spill": 2.5,
|
130 |
"chemical foam": 2, "industrial discharge": 2, "sewage water": 2,
|
131 |
"plastic waste": 1.5, "construction waste": 1.5, "algal bloom": 1.5,
|
132 |
"agricultural runoff": 1.5, "floating trash": 1, "organic debris": 1
|
133 |
}
|
134 |
-
|
135 |
avg_weight = sum(weights.get(p, 1) for p in pollutants) / len(pollutants)
|
136 |
return min(10, max(1, round(avg_weight * 3)))
|
137 |
|
@@ -147,21 +148,8 @@ Severity: [number]"""
|
|
147 |
{pollutants_list}
|
148 |
{severity_bar}"""
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
return "Hello! I'm a river pollution analyzer. Ask me about pollution types or upload an image for analysis."
|
153 |
-
elif "pollution" in message.lower():
|
154 |
-
return "Common river pollutants include: plastic waste, chemical foam, industrial discharge, sewage water, and oil spills."
|
155 |
-
else:
|
156 |
-
return "I can answer questions about river pollution. Try asking about pollution types or upload an image for analysis."
|
157 |
-
|
158 |
-
# Initialize with error handling
|
159 |
-
try:
|
160 |
-
analyzer = RiverPollutionAnalyzer()
|
161 |
-
model_status = "β
Model loaded successfully"
|
162 |
-
except Exception as e:
|
163 |
-
analyzer = None
|
164 |
-
model_status = f"β Model loading failed: {str(e)}"
|
165 |
|
166 |
css = """
|
167 |
.header {
|
@@ -191,66 +179,58 @@ css = """
|
|
191 |
border-radius: 10px;
|
192 |
height: 100%;
|
193 |
}
|
|
|
|
|
|
|
|
|
194 |
"""
|
195 |
|
196 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
197 |
with gr.Column(elem_classes="header"):
|
198 |
gr.Markdown("# π River Pollution Analyzer")
|
199 |
-
gr.Markdown(f"### {
|
200 |
|
201 |
with gr.Row(elem_classes="side-by-side"):
|
|
|
202 |
with gr.Column(elem_classes="left-panel"):
|
203 |
with gr.Group():
|
204 |
image_input = gr.Image(type="pil", label="Upload River Image", height=300)
|
205 |
analyze_btn = gr.Button("π Analyze Pollution", variant="primary")
|
206 |
|
207 |
with gr.Group(elem_classes="analysis-box"):
|
208 |
-
gr.Markdown("### π Analysis
|
209 |
analysis_output = gr.Markdown()
|
210 |
|
|
|
211 |
with gr.Column(elem_classes="right-panel"):
|
212 |
with gr.Group(elem_classes="chat-container"):
|
213 |
-
|
|
|
214 |
with gr.Row():
|
215 |
chat_input = gr.Textbox(
|
216 |
-
placeholder="Ask about pollution
|
217 |
-
label="Your Question",
|
218 |
container=False,
|
219 |
scale=5
|
220 |
)
|
221 |
-
chat_btn = gr.Button("
|
222 |
-
clear_btn = gr.Button("
|
223 |
|
224 |
analyze_btn.click(
|
225 |
-
analyzer.analyze_image
|
226 |
inputs=image_input,
|
227 |
outputs=analysis_output
|
228 |
)
|
229 |
|
230 |
-
chat_input.submit(
|
231 |
-
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
232 |
-
inputs=[chat_input, chatbot],
|
233 |
-
outputs=[chat_input, chatbot]
|
234 |
-
)
|
235 |
-
|
236 |
-
chat_btn.click(
|
237 |
-
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
238 |
-
inputs=[chat_input, chatbot],
|
239 |
-
outputs=[chat_input, chatbot]
|
240 |
-
)
|
241 |
-
|
242 |
-
clear_btn.click(lambda: None, outputs=[chatbot])
|
243 |
-
|
244 |
gr.Examples(
|
245 |
examples=[
|
246 |
-
["
|
247 |
-
["
|
248 |
],
|
249 |
inputs=image_input,
|
250 |
outputs=analysis_output,
|
251 |
-
fn=analyzer.analyze_image
|
252 |
-
cache_examples=
|
253 |
-
label="
|
254 |
)
|
255 |
|
256 |
-
demo.queue(max_size=
|
|
|
1 |
+
# app.py
|
2 |
import torch
|
3 |
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration, BitsAndBytesConfig
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
import re
|
7 |
+
import os
|
8 |
from typing import List, Tuple
|
9 |
|
10 |
+
# Create model cache directory
|
11 |
+
os.makedirs("model_cache", exist_ok=True)
|
12 |
+
|
13 |
+
# 4-bit quantization config
|
14 |
quant_config = BitsAndBytesConfig(
|
15 |
load_in_4bit=True,
|
16 |
bnb_4bit_compute_dtype=torch.float16,
|
|
|
21 |
class RiverPollutionAnalyzer:
|
22 |
def __init__(self):
|
23 |
try:
|
24 |
+
# Load InstructBLIP-FLAN-T5-XL with 4-bit quantization
|
25 |
self.processor = InstructBlipProcessor.from_pretrained(
|
26 |
"Salesforce/instructblip-flan-t5-xl",
|
27 |
cache_dir="model_cache"
|
|
|
33 |
torch_dtype=torch.float16,
|
34 |
cache_dir="model_cache"
|
35 |
)
|
36 |
+
self.model_loaded = True
|
37 |
+
self.status = "β
Model loaded successfully"
|
38 |
except Exception as e:
|
39 |
+
self.model_loaded = False
|
40 |
+
self.status = f"β Model loading failed: {str(e)}"
|
41 |
+
print(self.status)
|
42 |
|
43 |
self.pollutants = [
|
44 |
"plastic waste", "chemical foam", "industrial discharge",
|
|
|
61 |
}
|
62 |
|
63 |
def analyze_image(self, image):
|
64 |
+
if not self.model_loaded:
|
65 |
+
return "Model not loaded. Please check logs."
|
66 |
+
|
67 |
if not isinstance(image, Image.Image):
|
68 |
image = Image.fromarray(image)
|
69 |
|
70 |
+
prompt = """Analyze this river pollution and list:
|
71 |
+
1. Visible pollutants from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
|
72 |
+
2. Severity estimate (1-10)
|
73 |
|
74 |
+
Respond EXACTLY as:
|
75 |
Pollutants: [comma separated list]
|
76 |
Severity: [number]"""
|
77 |
|
|
|
82 |
return_tensors="pt"
|
83 |
).to(self.model.device)
|
84 |
|
85 |
+
outputs = self.model.generate(
|
86 |
+
**inputs,
|
87 |
+
max_new_tokens=150, # Reduced for memory
|
88 |
+
temperature=0.5,
|
89 |
+
top_p=0.85
|
90 |
+
)
|
|
|
|
|
91 |
|
92 |
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
93 |
pollutants, severity = self._parse_response(analysis)
|
94 |
return self._format_analysis(pollutants, severity)
|
95 |
except Exception as e:
|
96 |
+
return f"β οΈ Analysis error: {str(e)}"
|
97 |
|
|
|
98 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
99 |
pollutants = []
|
100 |
severity = 3
|
|
|
104 |
r'(?i)(pollutants?|contaminants?)[:\s]*\[?(.*?)(?:\]|Severity|severity|$)',
|
105 |
analysis
|
106 |
)
|
|
|
107 |
if pollutant_match:
|
108 |
pollutants_str = pollutant_match.group(2).strip()
|
109 |
pollutants = [
|
110 |
+
p.strip().lower()
|
111 |
for p in re.split(r'[,;]|\band\b', pollutants_str)
|
112 |
if p.strip().lower() in self.pollutants
|
113 |
]
|
114 |
|
115 |
# Extract severity
|
116 |
+
severity_match = re.search(r'(?i)(severity|level)[:\s]*(\d{1,2})', analysis)
|
|
|
|
|
|
|
|
|
117 |
if severity_match:
|
118 |
try:
|
119 |
severity = min(max(int(severity_match.group(2)), 1), 10)
|
|
|
127 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
128 |
if not pollutants:
|
129 |
return 1
|
|
|
130 |
weights = {
|
131 |
"medical waste": 3, "toxic sludge": 3, "oil spill": 2.5,
|
132 |
"chemical foam": 2, "industrial discharge": 2, "sewage water": 2,
|
133 |
"plastic waste": 1.5, "construction waste": 1.5, "algal bloom": 1.5,
|
134 |
"agricultural runoff": 1.5, "floating trash": 1, "organic debris": 1
|
135 |
}
|
|
|
136 |
avg_weight = sum(weights.get(p, 1) for p in pollutants) / len(pollutants)
|
137 |
return min(10, max(1, round(avg_weight * 3)))
|
138 |
|
|
|
148 |
{pollutants_list}
|
149 |
{severity_bar}"""
|
150 |
|
151 |
+
# Initialize analyzer
|
152 |
+
analyzer = RiverPollutionAnalyzer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
css = """
|
155 |
.header {
|
|
|
179 |
border-radius: 10px;
|
180 |
height: 100%;
|
181 |
}
|
182 |
+
.dark .analysis-box, .dark .chat-container {
|
183 |
+
background: #2a2a2a;
|
184 |
+
border-color: #444;
|
185 |
+
}
|
186 |
"""
|
187 |
|
188 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
189 |
with gr.Column(elem_classes="header"):
|
190 |
gr.Markdown("# π River Pollution Analyzer")
|
191 |
+
gr.Markdown(f"### {analyzer.status}")
|
192 |
|
193 |
with gr.Row(elem_classes="side-by-side"):
|
194 |
+
# Left Panel
|
195 |
with gr.Column(elem_classes="left-panel"):
|
196 |
with gr.Group():
|
197 |
image_input = gr.Image(type="pil", label="Upload River Image", height=300)
|
198 |
analyze_btn = gr.Button("π Analyze Pollution", variant="primary")
|
199 |
|
200 |
with gr.Group(elem_classes="analysis-box"):
|
201 |
+
gr.Markdown("### π Analysis Report")
|
202 |
analysis_output = gr.Markdown()
|
203 |
|
204 |
+
# Right Panel
|
205 |
with gr.Column(elem_classes="right-panel"):
|
206 |
with gr.Group(elem_classes="chat-container"):
|
207 |
+
gr.Markdown("### π¬ Pollution Q&A")
|
208 |
+
chatbot = gr.Chatbot(height=400)
|
209 |
with gr.Row():
|
210 |
chat_input = gr.Textbox(
|
211 |
+
placeholder="Ask about pollution types...",
|
|
|
212 |
container=False,
|
213 |
scale=5
|
214 |
)
|
215 |
+
chat_btn = gr.Button("Send", variant="secondary", scale=1)
|
216 |
+
clear_btn = gr.Button("Clear Chat", size="sm")
|
217 |
|
218 |
analyze_btn.click(
|
219 |
+
analyzer.analyze_image,
|
220 |
inputs=image_input,
|
221 |
outputs=analysis_output
|
222 |
)
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
gr.Examples(
|
225 |
examples=[
|
226 |
+
["examples/polluted_river1.jpg"],
|
227 |
+
["examples/polluted_river2.jpg"]
|
228 |
],
|
229 |
inputs=image_input,
|
230 |
outputs=analysis_output,
|
231 |
+
fn=analyzer.analyze_image,
|
232 |
+
cache_examples=False, # Disabled for free tier
|
233 |
+
label="Example Images"
|
234 |
)
|
235 |
|
236 |
+
demo.queue(max_size=2).launch()
|