Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,41 @@
|
|
1 |
-
# app.py
|
2 |
import torch
|
3 |
-
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
import re
|
7 |
from typing import List, Tuple
|
8 |
-
import os
|
9 |
-
import logging
|
10 |
-
|
11 |
-
# Configure logging
|
12 |
-
logging.basicConfig(level=logging.INFO)
|
13 |
-
logger = logging.getLogger(__name__)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class RiverPollutionAnalyzer:
|
17 |
def __init__(self):
|
18 |
-
# Check if CUDA is available
|
19 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
-
torch_dtype = torch.float16 if self.device == "cuda" else torch.float32
|
21 |
-
logger.info(f"Using device: {self.device}, dtype: {torch_dtype}")
|
22 |
-
|
23 |
try:
|
24 |
-
#
|
25 |
-
logger.info("Loading processor...")
|
26 |
self.processor = InstructBlipProcessor.from_pretrained(
|
27 |
-
"Salesforce/instructblip-
|
|
|
28 |
)
|
29 |
-
|
30 |
-
# Load model with appropriate settings
|
31 |
-
logger.info("Loading model...")
|
32 |
self.model = InstructBlipForConditionalGeneration.from_pretrained(
|
33 |
-
"Salesforce/instructblip-
|
|
|
34 |
device_map="auto",
|
35 |
-
torch_dtype=
|
36 |
-
|
37 |
-
offload_folder="./offload",
|
38 |
)
|
39 |
-
logger.info("Model loaded successfully")
|
40 |
-
|
41 |
except Exception as e:
|
42 |
-
|
43 |
-
raise RuntimeError(f"Failed to initialize model: {str(e)}")
|
44 |
|
45 |
self.pollutants = [
|
46 |
-
"plastic waste",
|
47 |
-
"
|
48 |
-
"
|
49 |
-
"
|
50 |
-
"oil spill",
|
51 |
-
"organic debris",
|
52 |
-
"construction waste",
|
53 |
-
"medical waste",
|
54 |
-
"floating trash",
|
55 |
-
"algal bloom",
|
56 |
-
"toxic sludge",
|
57 |
-
"agricultural runoff",
|
58 |
]
|
59 |
|
60 |
self.severity_descriptions = {
|
@@ -67,16 +48,15 @@ class RiverPollutionAnalyzer:
|
|
67 |
7: "Very severe pollution - Major ecosystem impact",
|
68 |
8: "Extreme pollution - Dangerous levels",
|
69 |
9: "Critical pollution - Immediate action needed",
|
70 |
-
10: "Disaster level - Ecological catastrophe"
|
71 |
}
|
72 |
|
73 |
def analyze_image(self, image):
|
74 |
"""Analyze river pollution with robust parsing"""
|
75 |
-
|
76 |
-
|
77 |
-
image = Image.fromarray(image)
|
78 |
|
79 |
-
|
80 |
1. List ALL visible pollutants ONLY from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
|
81 |
2. Estimate pollution severity from 1-10
|
82 |
|
@@ -84,9 +64,12 @@ Respond EXACTLY in this format:
|
|
84 |
Pollutants: [comma separated list]
|
85 |
Severity: [number]"""
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
with torch.no_grad():
|
92 |
outputs = self.model.generate(
|
@@ -94,38 +77,39 @@ Severity: [number]"""
|
|
94 |
max_new_tokens=200,
|
95 |
temperature=0.5,
|
96 |
top_p=0.85,
|
97 |
-
do_sample=True
|
98 |
)
|
99 |
|
100 |
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
101 |
pollutants, severity = self._parse_response(analysis)
|
102 |
return self._format_analysis(pollutants, severity)
|
103 |
-
|
104 |
except Exception as e:
|
105 |
-
|
106 |
-
return "β οΈ Error analyzing image. Please try again or check the logs for details."
|
107 |
|
|
|
108 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
109 |
-
"""Robust parsing of model response"""
|
110 |
pollutants = []
|
111 |
severity = 3
|
112 |
|
113 |
# Extract pollutants
|
114 |
pollutant_match = re.search(
|
115 |
-
r
|
116 |
-
analysis
|
117 |
)
|
118 |
|
119 |
if pollutant_match:
|
120 |
pollutants_str = pollutant_match.group(2).strip()
|
121 |
pollutants = [
|
122 |
p.strip().lower()
|
123 |
-
for p in re.split(r
|
124 |
if p.strip().lower() in self.pollutants
|
125 |
]
|
126 |
|
127 |
# Extract severity
|
128 |
-
severity_match = re.search(
|
|
|
|
|
|
|
129 |
|
130 |
if severity_match:
|
131 |
try:
|
@@ -138,72 +122,46 @@ Severity: [number]"""
|
|
138 |
return pollutants, severity
|
139 |
|
140 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
141 |
-
"""Weighted severity calculation"""
|
142 |
if not pollutants:
|
143 |
return 1
|
144 |
|
145 |
weights = {
|
146 |
-
"medical waste": 3,
|
147 |
-
"
|
148 |
-
"
|
149 |
-
"
|
150 |
-
"industrial discharge": 2,
|
151 |
-
"sewage water": 2,
|
152 |
-
"plastic waste": 1.5,
|
153 |
-
"construction waste": 1.5,
|
154 |
-
"algal bloom": 1.5,
|
155 |
-
"agricultural runoff": 1.5,
|
156 |
-
"floating trash": 1,
|
157 |
-
"organic debris": 1,
|
158 |
}
|
159 |
|
160 |
avg_weight = sum(weights.get(p, 1) for p in pollutants) / len(pollutants)
|
161 |
return min(10, max(1, round(avg_weight * 3)))
|
162 |
|
163 |
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
164 |
-
"""Generate formatted report"""
|
165 |
severity_bar = f"""π Severity: {severity}/10
|
166 |
{"β" * severity}{"β" * (10 - severity)}
|
167 |
-
{self.severity_descriptions.get(severity,
|
168 |
|
169 |
-
pollutants_list = (
|
170 |
-
"
|
171 |
-
if not pollutants
|
172 |
-
else "\n".join(
|
173 |
-
f"{i}. {p.capitalize()}" for i, p in enumerate(pollutants[:5], 1)
|
174 |
-
)
|
175 |
-
)
|
176 |
|
177 |
return f"""π River Pollution Analysis π
|
178 |
{pollutants_list}
|
179 |
{severity_bar}"""
|
180 |
|
181 |
def analyze_chat(self, message: str) -> str:
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
return "Common river pollutants include: plastic waste, chemical foam, industrial discharge, sewage water, and oil spills."
|
189 |
-
elif "severity" in message:
|
190 |
-
return "Severity is rated 1-10 (1=minimal, 10=disaster). It considers pollutant type and quantity."
|
191 |
-
elif "help" in message:
|
192 |
-
return "I can: 1) Analyze river pollution in images 2) Answer pollution questions. Try uploading an image or asking about pollution types."
|
193 |
-
else:
|
194 |
-
return "I specialize in river pollution analysis. Try asking about pollution types or upload an image for analysis."
|
195 |
-
except Exception as e:
|
196 |
-
logger.error(f"Error in chat: {str(e)}")
|
197 |
-
return "Sorry, I encountered an error. Please try again."
|
198 |
-
|
199 |
|
200 |
-
# Initialize
|
201 |
try:
|
202 |
analyzer = RiverPollutionAnalyzer()
|
203 |
-
|
204 |
except Exception as e:
|
205 |
-
|
206 |
-
|
207 |
|
208 |
css = """
|
209 |
.header {
|
@@ -213,16 +171,13 @@ css = """
|
|
213 |
border-radius: 10px;
|
214 |
margin-bottom: 20px;
|
215 |
}
|
216 |
-
|
217 |
.side-by-side {
|
218 |
display: flex;
|
219 |
gap: 20px;
|
220 |
}
|
221 |
-
|
222 |
.left-panel, .right-panel {
|
223 |
flex: 1;
|
224 |
}
|
225 |
-
|
226 |
.analysis-box {
|
227 |
padding: 20px;
|
228 |
background: #f8f9fa;
|
@@ -230,97 +185,72 @@ css = """
|
|
230 |
margin-top: 20px;
|
231 |
border: 1px solid #dee2e6;
|
232 |
}
|
233 |
-
|
234 |
.chat-container {
|
235 |
background: #f8f9fa;
|
236 |
padding: 20px;
|
237 |
border-radius: 10px;
|
238 |
height: 100%;
|
239 |
}
|
240 |
-
|
241 |
-
.pollution-icon {
|
242 |
-
font-size: 24px;
|
243 |
-
margin-right: 10px;
|
244 |
-
}
|
245 |
-
|
246 |
-
.severity-bar {
|
247 |
-
font-family: monospace;
|
248 |
-
font-size: 16px;
|
249 |
-
}
|
250 |
-
|
251 |
-
.error-message {
|
252 |
-
color: #dc3545;
|
253 |
-
font-weight: bold;
|
254 |
-
}
|
255 |
"""
|
256 |
|
257 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
258 |
with gr.Column(elem_classes="header"):
|
259 |
gr.Markdown("# π River Pollution Analyzer")
|
260 |
-
gr.Markdown("###
|
261 |
|
262 |
with gr.Row(elem_classes="side-by-side"):
|
263 |
-
# Left Panel
|
264 |
with gr.Column(elem_classes="left-panel"):
|
265 |
with gr.Group():
|
266 |
-
image_input = gr.Image(
|
267 |
-
type="pil", label="Upload River Image", height=300
|
268 |
-
)
|
269 |
analyze_btn = gr.Button("π Analyze Pollution", variant="primary")
|
270 |
-
|
271 |
with gr.Group(elem_classes="analysis-box"):
|
272 |
gr.Markdown("### π Analysis report")
|
273 |
analysis_output = gr.Markdown()
|
274 |
|
275 |
-
# Right Panel
|
276 |
with gr.Column(elem_classes="right-panel"):
|
277 |
with gr.Group(elem_classes="chat-container"):
|
278 |
-
chatbot = gr.Chatbot(
|
279 |
-
label="Pollution Analysis Q&A", height=400, bubble_full_width=False
|
280 |
-
)
|
281 |
with gr.Row():
|
282 |
chat_input = gr.Textbox(
|
283 |
placeholder="Ask about pollution sources...",
|
284 |
label="Your Question",
|
285 |
container=False,
|
286 |
-
scale=5
|
287 |
)
|
288 |
chat_btn = gr.Button("π¬ Ask", variant="secondary", scale=1)
|
289 |
clear_btn = gr.Button("π§Ή Clear Chat History", size="sm")
|
290 |
|
291 |
analyze_btn.click(
|
292 |
-
analyzer.analyze_image
|
|
|
|
|
293 |
)
|
294 |
|
295 |
chat_input.submit(
|
296 |
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
297 |
inputs=[chat_input, chatbot],
|
298 |
-
outputs=[chat_input, chatbot]
|
299 |
)
|
300 |
|
301 |
chat_btn.click(
|
302 |
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
303 |
inputs=[chat_input, chatbot],
|
304 |
-
outputs=[chat_input, chatbot]
|
305 |
)
|
306 |
|
307 |
clear_btn.click(lambda: None, outputs=[chatbot])
|
308 |
|
309 |
gr.Examples(
|
310 |
examples=[
|
311 |
-
[
|
312 |
-
|
313 |
-
],
|
314 |
-
[
|
315 |
-
"https://huggingface.co/spaces/atharwaah1work/tarak.AI/resolve/main/polluted_river2.jpg"
|
316 |
-
],
|
317 |
],
|
318 |
inputs=image_input,
|
319 |
outputs=analysis_output,
|
320 |
-
fn=analyzer.analyze_image,
|
321 |
cache_examples=True,
|
322 |
-
label="Try example images:"
|
323 |
)
|
324 |
|
325 |
-
|
326 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration, BitsAndBytesConfig
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import re
|
6 |
from typing import List, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Configuration for 4-bit quantization
|
9 |
+
quant_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_compute_dtype=torch.float16,
|
12 |
+
bnb_4bit_quant_type="nf4",
|
13 |
+
bnb_4bit_use_double_quant=True
|
14 |
+
)
|
15 |
|
16 |
class RiverPollutionAnalyzer:
|
17 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
+
# Initialize InstructBLIP-FLAN-T5-XL with 4-bit quantization
|
|
|
20 |
self.processor = InstructBlipProcessor.from_pretrained(
|
21 |
+
"Salesforce/instructblip-flan-t5-xl",
|
22 |
+
cache_dir="model_cache"
|
23 |
)
|
|
|
|
|
|
|
24 |
self.model = InstructBlipForConditionalGeneration.from_pretrained(
|
25 |
+
"Salesforce/instructblip-flan-t5-xl",
|
26 |
+
quantization_config=quant_config,
|
27 |
device_map="auto",
|
28 |
+
torch_dtype=torch.float16,
|
29 |
+
cache_dir="model_cache"
|
|
|
30 |
)
|
|
|
|
|
31 |
except Exception as e:
|
32 |
+
raise RuntimeError(f"Model loading failed: {str(e)}")
|
|
|
33 |
|
34 |
self.pollutants = [
|
35 |
+
"plastic waste", "chemical foam", "industrial discharge",
|
36 |
+
"sewage water", "oil spill", "organic debris",
|
37 |
+
"construction waste", "medical waste", "floating trash",
|
38 |
+
"algal bloom", "toxic sludge", "agricultural runoff"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
]
|
40 |
|
41 |
self.severity_descriptions = {
|
|
|
48 |
7: "Very severe pollution - Major ecosystem impact",
|
49 |
8: "Extreme pollution - Dangerous levels",
|
50 |
9: "Critical pollution - Immediate action needed",
|
51 |
+
10: "Disaster level - Ecological catastrophe"
|
52 |
}
|
53 |
|
54 |
def analyze_image(self, image):
|
55 |
"""Analyze river pollution with robust parsing"""
|
56 |
+
if not isinstance(image, Image.Image):
|
57 |
+
image = Image.fromarray(image)
|
|
|
58 |
|
59 |
+
prompt = """Analyze this river pollution scene and provide:
|
60 |
1. List ALL visible pollutants ONLY from: [plastic waste, chemical foam, industrial discharge, sewage water, oil spill, organic debris, construction waste, medical waste, floating trash, algal bloom, toxic sludge, agricultural runoff]
|
61 |
2. Estimate pollution severity from 1-10
|
62 |
|
|
|
64 |
Pollutants: [comma separated list]
|
65 |
Severity: [number]"""
|
66 |
|
67 |
+
try:
|
68 |
+
inputs = self.processor(
|
69 |
+
images=image,
|
70 |
+
text=prompt,
|
71 |
+
return_tensors="pt"
|
72 |
+
).to(self.model.device)
|
73 |
|
74 |
with torch.no_grad():
|
75 |
outputs = self.model.generate(
|
|
|
77 |
max_new_tokens=200,
|
78 |
temperature=0.5,
|
79 |
top_p=0.85,
|
80 |
+
do_sample=True
|
81 |
)
|
82 |
|
83 |
analysis = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
84 |
pollutants, severity = self._parse_response(analysis)
|
85 |
return self._format_analysis(pollutants, severity)
|
|
|
86 |
except Exception as e:
|
87 |
+
return f"β οΈ Analysis failed: {str(e)}"
|
|
|
88 |
|
89 |
+
# [Keep your existing parsing/formatting methods]
|
90 |
def _parse_response(self, analysis: str) -> Tuple[List[str], int]:
|
|
|
91 |
pollutants = []
|
92 |
severity = 3
|
93 |
|
94 |
# Extract pollutants
|
95 |
pollutant_match = re.search(
|
96 |
+
r'(?i)(pollutants?|contaminants?)[:\s]*\[?(.*?)(?:\]|Severity|severity|$)',
|
97 |
+
analysis
|
98 |
)
|
99 |
|
100 |
if pollutant_match:
|
101 |
pollutants_str = pollutant_match.group(2).strip()
|
102 |
pollutants = [
|
103 |
p.strip().lower()
|
104 |
+
for p in re.split(r'[,;]|\band\b', pollutants_str)
|
105 |
if p.strip().lower() in self.pollutants
|
106 |
]
|
107 |
|
108 |
# Extract severity
|
109 |
+
severity_match = re.search(
|
110 |
+
r'(?i)(severity|level)[:\s]*(\d{1,2})',
|
111 |
+
analysis
|
112 |
+
)
|
113 |
|
114 |
if severity_match:
|
115 |
try:
|
|
|
122 |
return pollutants, severity
|
123 |
|
124 |
def _calculate_severity(self, pollutants: List[str]) -> int:
|
|
|
125 |
if not pollutants:
|
126 |
return 1
|
127 |
|
128 |
weights = {
|
129 |
+
"medical waste": 3, "toxic sludge": 3, "oil spill": 2.5,
|
130 |
+
"chemical foam": 2, "industrial discharge": 2, "sewage water": 2,
|
131 |
+
"plastic waste": 1.5, "construction waste": 1.5, "algal bloom": 1.5,
|
132 |
+
"agricultural runoff": 1.5, "floating trash": 1, "organic debris": 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
}
|
134 |
|
135 |
avg_weight = sum(weights.get(p, 1) for p in pollutants) / len(pollutants)
|
136 |
return min(10, max(1, round(avg_weight * 3)))
|
137 |
|
138 |
def _format_analysis(self, pollutants: List[str], severity: int) -> str:
|
|
|
139 |
severity_bar = f"""π Severity: {severity}/10
|
140 |
{"β" * severity}{"β" * (10 - severity)}
|
141 |
+
{self.severity_descriptions.get(severity, '')}"""
|
142 |
|
143 |
+
pollutants_list = "\nπ No pollutants detected" if not pollutants else "\n".join(
|
144 |
+
f"{i}. {p.capitalize()}" for i, p in enumerate(pollutants[:5], 1))
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
return f"""π River Pollution Analysis π
|
147 |
{pollutants_list}
|
148 |
{severity_bar}"""
|
149 |
|
150 |
def analyze_chat(self, message: str) -> str:
|
151 |
+
if any(word in message.lower() for word in ["hello", "hi", "hey"]):
|
152 |
+
return "Hello! I'm a river pollution analyzer. Ask me about pollution types or upload an image for analysis."
|
153 |
+
elif "pollution" in message.lower():
|
154 |
+
return "Common river pollutants include: plastic waste, chemical foam, industrial discharge, sewage water, and oil spills."
|
155 |
+
else:
|
156 |
+
return "I can answer questions about river pollution. Try asking about pollution types or upload an image for analysis."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
# Initialize with error handling
|
159 |
try:
|
160 |
analyzer = RiverPollutionAnalyzer()
|
161 |
+
model_status = "β
Model loaded successfully"
|
162 |
except Exception as e:
|
163 |
+
analyzer = None
|
164 |
+
model_status = f"β Model loading failed: {str(e)}"
|
165 |
|
166 |
css = """
|
167 |
.header {
|
|
|
171 |
border-radius: 10px;
|
172 |
margin-bottom: 20px;
|
173 |
}
|
|
|
174 |
.side-by-side {
|
175 |
display: flex;
|
176 |
gap: 20px;
|
177 |
}
|
|
|
178 |
.left-panel, .right-panel {
|
179 |
flex: 1;
|
180 |
}
|
|
|
181 |
.analysis-box {
|
182 |
padding: 20px;
|
183 |
background: #f8f9fa;
|
|
|
185 |
margin-top: 20px;
|
186 |
border: 1px solid #dee2e6;
|
187 |
}
|
|
|
188 |
.chat-container {
|
189 |
background: #f8f9fa;
|
190 |
padding: 20px;
|
191 |
border-radius: 10px;
|
192 |
height: 100%;
|
193 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
"""
|
195 |
|
196 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
197 |
with gr.Column(elem_classes="header"):
|
198 |
gr.Markdown("# π River Pollution Analyzer")
|
199 |
+
gr.Markdown(f"### {model_status}")
|
200 |
|
201 |
with gr.Row(elem_classes="side-by-side"):
|
|
|
202 |
with gr.Column(elem_classes="left-panel"):
|
203 |
with gr.Group():
|
204 |
+
image_input = gr.Image(type="pil", label="Upload River Image", height=300)
|
|
|
|
|
205 |
analyze_btn = gr.Button("π Analyze Pollution", variant="primary")
|
206 |
+
|
207 |
with gr.Group(elem_classes="analysis-box"):
|
208 |
gr.Markdown("### π Analysis report")
|
209 |
analysis_output = gr.Markdown()
|
210 |
|
|
|
211 |
with gr.Column(elem_classes="right-panel"):
|
212 |
with gr.Group(elem_classes="chat-container"):
|
213 |
+
chatbot = gr.Chatbot(label="Pollution Analysis Q&A", height=400)
|
|
|
|
|
214 |
with gr.Row():
|
215 |
chat_input = gr.Textbox(
|
216 |
placeholder="Ask about pollution sources...",
|
217 |
label="Your Question",
|
218 |
container=False,
|
219 |
+
scale=5
|
220 |
)
|
221 |
chat_btn = gr.Button("π¬ Ask", variant="secondary", scale=1)
|
222 |
clear_btn = gr.Button("π§Ή Clear Chat History", size="sm")
|
223 |
|
224 |
analyze_btn.click(
|
225 |
+
analyzer.analyze_image if analyzer else lambda x: "Model not loaded",
|
226 |
+
inputs=image_input,
|
227 |
+
outputs=analysis_output
|
228 |
)
|
229 |
|
230 |
chat_input.submit(
|
231 |
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
232 |
inputs=[chat_input, chatbot],
|
233 |
+
outputs=[chat_input, chatbot]
|
234 |
)
|
235 |
|
236 |
chat_btn.click(
|
237 |
lambda msg, chat: ("", chat + [(msg, analyzer.analyze_chat(msg))]),
|
238 |
inputs=[chat_input, chatbot],
|
239 |
+
outputs=[chat_input, chatbot]
|
240 |
)
|
241 |
|
242 |
clear_btn.click(lambda: None, outputs=[chatbot])
|
243 |
|
244 |
gr.Examples(
|
245 |
examples=[
|
246 |
+
["https://huggingface.co/spaces/atharwaah1work/tarak.AI/resolve/main/polluted_river1.jpg"],
|
247 |
+
["https://huggingface.co/spaces/atharwaah1work/tarak.AI/resolve/main/polluted_river2.jpg"]
|
|
|
|
|
|
|
|
|
248 |
],
|
249 |
inputs=image_input,
|
250 |
outputs=analysis_output,
|
251 |
+
fn=analyzer.analyze_image if analyzer else lambda x: "Model not loaded",
|
252 |
cache_examples=True,
|
253 |
+
label="Try example images:"
|
254 |
)
|
255 |
|
256 |
+
demo.queue(max_size=3).launch()
|
|