import gradio as gr from transformers import AutoTokenizer import timm title = "Finetuning [BERT] on A Financial News Sentiment Dataset" description = """ The LLM was finetuned on a Financial News Tweet Sentiment Dataset. The documents have 3 different labels: "LABEL_0": "Bearish", "LABEL_1": "Bullish", "LABEL_2": "Neutral" """ article = "Check out the dataset that [BERT cased]((https://huggingface.co/bert-base-cased?text=Paris+is+the+%5BMASK%5D+of+France.)) was [finetuned on](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment/viewer/zeroshot--twitter-financial-news-sentiment/train?row=9505)." def sentiment_analyzer(tweet): model_reloaded = timm.create_model('hf_hub:at2507/zeroshot_finetuned_sentiment', pretrained=True) # model = model.load("models/at2507/zeroshot_finetuned_sentiment") # gr.Interface.load("models/at2507/zeroshot_finetuned_sentiment").launch() tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") zeroshotsent_model = pipeline("text-classification", model = model.to('cpu:0'), tokenizer=tokenizer) return zeroshotsent_model(tweet) gr.Interface( fn=sentiment_analyzer, inputs="textbox", outputs="text", title=title, description=description, article=article, examples=[["CLNE, TRXC, TGE and ADMS among midday movers"], ["CRISPR Therapeutics among healthcare gainers; Plus Therapeutics leads the losers"]], ).launch()