at2507 commited on
Commit
f3340bb
·
1 Parent(s): 7fb0464

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -29
app.py CHANGED
@@ -1,34 +1,38 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer
3
- import timm
 
 
 
 
 
 
 
 
 
4
 
5
- title = "Finetuning [BERT] on A Financial News Sentiment Dataset"
6
- description = """
7
- The LLM was finetuned on a Financial News Tweet Sentiment Dataset. The documents have 3 different labels:
8
- "LABEL_0": "Bearish",
9
- "LABEL_1": "Bullish",
10
- "LABEL_2": "Neutral"
11
- <img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px>
12
- """
13
 
14
- article = "Check out the dataset that [BERT cased]((https://huggingface.co/bert-base-cased?text=Paris+is+the+%5BMASK%5D+of+France.)) was [finetuned on](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment/viewer/zeroshot--twitter-financial-news-sentiment/train?row=9505)."
15
 
 
 
 
 
 
 
 
16
 
17
- def sentiment_analyzer(tweet):
18
- model_reloaded = timm.create_model('hf_hub:at2507/zeroshot_finetuned_sentiment', pretrained=True)
19
- # model = model.load("models/at2507/zeroshot_finetuned_sentiment")
20
- # gr.Interface.load("models/at2507/zeroshot_finetuned_sentiment").launch()
21
- tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
22
- zeroshotsent_model = pipeline("text-classification", model = model.to('cpu:0'), tokenizer=tokenizer)
23
- return zeroshotsent_model(tweet)
 
 
 
 
 
24
 
25
- gr.Interface(
26
- fn=sentiment_analyzer,
27
- inputs="textbox",
28
- outputs="text",
29
- title=title,
30
- description=description,
31
- article=article,
32
- examples=[["CLNE, TRXC, TGE and ADMS among midday movers"],
33
- ["CRISPR Therapeutics among healthcare gainers; Plus Therapeutics leads the losers"]],
34
- ).launch()
 
1
+ # import gradio as gr
2
+ # from transformers import AutoTokenizer
3
+ # import timm
4
+
5
+ # title = "Finetuning [BERT] on A Financial News Sentiment Dataset"
6
+ # description = """
7
+ # The LLM was finetuned on a Financial News Tweet Sentiment Dataset. The documents have 3 different labels:
8
+ # "LABEL_0": "Bearish",
9
+ # "LABEL_1": "Bullish",
10
+ # "LABEL_2": "Neutral"
11
+ # <img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px>
12
+ # """
13
 
14
+ # article = "Check out the dataset that [BERT cased]((https://huggingface.co/bert-base-cased?text=Paris+is+the+%5BMASK%5D+of+France.)) was [finetuned on](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment/viewer/zeroshot--twitter-financial-news-sentiment/train?row=9505)."
 
 
 
 
 
 
 
15
 
 
16
 
17
+ # def sentiment_analyzer(tweet):
18
+ # model_reloaded = timm.create_model('hf_hub:at2507/zeroshot_finetuned_sentiment', pretrained=True)
19
+ # # model = model.load("models/at2507/zeroshot_finetuned_sentiment")
20
+ # # gr.Interface.load("models/at2507/zeroshot_finetuned_sentiment").launch()
21
+ # tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
22
+ # zeroshotsent_model = pipeline("text-classification", model = model.to('cpu:0'), tokenizer=tokenizer)
23
+ # return zeroshotsent_model(tweet)
24
 
25
+ # gr.Interface(
26
+ # fn=sentiment_analyzer,
27
+ # inputs="textbox",
28
+ # outputs="text",
29
+ # title=title,
30
+ # description=description,
31
+ # article=article,
32
+ # examples=[["CLNE, TRXC, TGE and ADMS among midday movers"],
33
+ # ["CRISPR Therapeutics among healthcare gainers; Plus Therapeutics leads the losers"]],
34
+ # ).launch()
35
+
36
+ import gradio as gr
37
 
38
+ gr.Interface.load("models/at2507/zeroshot_finetuned_sentiment").launch()