astro21 commited on
Commit
5006716
·
1 Parent(s): 2bcf521

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -4
app.py CHANGED
@@ -10,7 +10,9 @@ import matplotlib.pyplot as plt
10
  import librosa.display
11
  from datetime import datetime
12
  import random
13
- from tensorflow.keras.preprocessing import image
 
 
14
  import matplotlib
15
 
16
 
@@ -181,6 +183,8 @@ def model():
181
  # Upload an MP3 audio file
182
  with col1:
183
  audio_file = st.file_uploader('Upload an MP3 audio file', type=['mp3'])
 
 
184
 
185
  if audio_file is not None:
186
  st.write('Processing...')
@@ -208,9 +212,14 @@ def model():
208
  model = tf.keras.models.load_model(model_path)
209
 
210
  # Load and preprocess the image
211
- img = image.load_img(image_path, target_size=(224, 224))
212
- img = image.img_to_array(img)
213
- img = np.expand_dims(img, axis=0)
 
 
 
 
 
214
 
215
  # Make a prediction
216
  predicted_class_index = model.predict(img, verbose=1)
@@ -218,6 +227,7 @@ def model():
218
  predicted_class = class_labels[predicted_class_index.argmax()]
219
 
220
  # Display the predicted bird species
 
221
  st.write('Predicted Bird Species:', predicted_class)
222
 
223
  # create a Streamlit app
 
10
  import librosa.display
11
  from datetime import datetime
12
  import random
13
+ from tensorflow.keras.preprocessing import image
14
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
15
+
16
  import matplotlib
17
 
18
 
 
183
  # Upload an MP3 audio file
184
  with col1:
185
  audio_file = st.file_uploader('Upload an MP3 audio file', type=['mp3'])
186
+ dropdown = st.selectbox('Select Actual Bird Species', class_labels.values())
187
+
188
 
189
  if audio_file is not None:
190
  st.write('Processing...')
 
212
  model = tf.keras.models.load_model(model_path)
213
 
214
  # Load and preprocess the image
215
+ # Load the image directly from the BytesIO object
216
+ image = load_img(image_buffer, target_size=(224, 224))
217
+
218
+ # Convert the image to a NumPy array
219
+ img_array = img_to_array(image)
220
+
221
+ # Expand the dimensions to make it compatible with your model
222
+ img = np.expand_dims(img_array, axis=0)
223
 
224
  # Make a prediction
225
  predicted_class_index = model.predict(img, verbose=1)
 
227
  predicted_class = class_labels[predicted_class_index.argmax()]
228
 
229
  # Display the predicted bird species
230
+ st.write('Actual Bird Species:', dropdown)
231
  st.write('Predicted Bird Species:', predicted_class)
232
 
233
  # create a Streamlit app