File size: 11,579 Bytes
7823211 efc740f 7823211 efc740f 7823211 efc740f 6601f49 efc740f 6601f49 ac548e6 6601f49 ac548e6 837dbe0 ac548e6 837dbe0 52c8520 aebfd4d 503d296 4a2a8c2 52c8520 4b30ddd 52c8520 4b30ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
'''
from flask import Flask, request, jsonify, send_from_directory, render_template
from flask_cors import CORS
from ultralytics import YOLO
import gradio as gr
from threading import Thread
import os
import uuid
import logging
from PIL import Image
# 配置日志记录
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# 创建 Flask 应用
app = Flask(__name__, static_folder='static')
CORS(app)
# 定义模型路径
models = {
'追踪': 'models/yolov8n.pt',
'检测': 'models/danzhu.pt',
'分类': 'models/yolov8n-cls.pt',
'姿势': 'models/yolov8n-pose.pt',
'分割': 'models/yolov8n-seg.pt'
}
model_instances = {}
def load_model(model_path):
"""加载模型"""
try:
logging.info(f"正在从 {model_path} 加载模型...")
model = YOLO(model_path)
logging.info(f"模型从 {model_path} 成功加载")
return model
except Exception as e:
logging.error(f"从 {model_path} 加载模型失败: {e}")
return None
def convert_image_format(img_path, target_format='JPEG'):
"""转换图像格式"""
try:
with Image.open(img_path) as img:
if img.mode != 'RGB':
img = img.convert('RGB')
base_name, _ = os.path.splitext(img_path)
target_path = f"{base_name}.{target_format.lower()}"
img.save(target_path, format=target_format)
logging.info(f"图像格式成功转换为 {target_format},保存到 {target_path}")
return target_path
except Exception as e:
logging.error(f"图像格式转换失败: {e}")
raise
def predict(model_name, img_path):
"""进行预测"""
try:
if model_name not in models:
logging.error("选择的模型无效。")
return "选择的模型无效。"
model_path = models[model_name]
if model_name not in model_instances:
model_instances[model_name] = load_model(model_path)
model = model_instances[model_name]
if model is None:
logging.error("由于连接错误,模型未加载。")
return "由于连接错误,模型未加载。"
unique_name = str(uuid.uuid4())
save_dir = './runs/detect'
os.makedirs(save_dir, exist_ok=True)
logging.info(f"保存目录: {save_dir}")
# 转换图像格式
img_path_converted = convert_image_format(img_path, 'JPEG')
img_path_converted = os.path.normpath(img_path_converted)
logging.info(f"对 {img_path_converted} 进行预测...")
results = model.predict(img_path_converted, save=True, project=save_dir, name=unique_name, device='cpu')
logging.info(f"预测结果: {results}")
result_dir = os.path.join(save_dir, unique_name)
result_dir = os.path.normpath(result_dir)
logging.info(f"结果目录: {result_dir}")
if not os.path.exists(result_dir):
logging.error(f"结果目录 {result_dir} 不存在")
return "未找到预测结果。"
# 查找预测结果文件
predicted_img_path = None
for file in os.listdir(result_dir):
if file.lower().endswith(('.jpeg', '.jpg')):
predicted_img_path = os.path.join(result_dir, file)
break
if predicted_img_path:
logging.info(f"找到预测图像: {predicted_img_path}")
return predicted_img_path
else:
logging.error(f"在 {result_dir} 中未找到预测图像")
return "未找到预测结果。"
except Exception as e:
logging.error(f"预测过程中出错: {e}")
return f"预测过程中出错: {e}"
# 定义 Gradio 界面
iface = gr.Interface(
fn=predict,
inputs=[
gr.Dropdown(choices=list(models.keys()), label="选择模型"),
gr.Image(type="filepath", label="输入图像")
],
outputs=gr.Image(type="filepath", label="输出图像")
)
@app.route('/')
def home():
"""主页"""
return render_template('index.html')
@app.route('/request', methods=['POST'])
def handle_request():
"""处理请求"""
try:
selected_model = request.form.get('model')
if selected_model not in models:
logging.error("选择的模型无效。")
return jsonify({'error': '选择的模型无效。'}), 400
model_path = models[selected_model]
if selected_model not in model_instances:
model_instances[selected_model] = load_model(model_path)
model = model_instances[selected_model]
if model is None:
logging.error("由于连接错误,模型未加载。")
return jsonify({'error': '由于连接错误,模型未加载。'}), 500
img = request.files.get('img')
if img is None:
logging.error("未提供图像。")
return jsonify({'error': '未提供图像。'}), 400
img_name = str(uuid.uuid4()) + '.jpg'
img_path = os.path.join('./img', img_name)
os.makedirs(os.path.dirname(img_path), exist_ok=True)
img.save(img_path)
logging.info(f"图像已保存到: {img_path}")
save_dir = './runs/detect'
os.makedirs(save_dir, exist_ok=True)
unique_name = str(uuid.uuid4())
logging.info(f"对 {img_path} 进行预测...")
results = model.predict(img_path, save=True, project=save_dir, name=unique_name, device='cpu')
logging.info(f"预测结果: {results}")
result_dir = os.path.join(save_dir, unique_name)
# 查找预测结果文件
predicted_img_path = None
for file in os.listdir(result_dir):
if file.endswith('.jpeg') or file.endswith('.jpg'):
predicted_img_path = os.path.join(result_dir, file)
break
if predicted_img_path:
img_url = f'/get/{unique_name}/{os.path.basename(predicted_img_path)}'
return jsonify({'message': '预测成功!', 'img_path': img_url})
else:
saved_files = os.listdir(result_dir)
logging.error(f"保存目录中包含文件: {saved_files}")
return jsonify({'error': '未找到预测结果。'}), 500
except Exception as e:
logging.error(f"处理请求时出错: {e}")
return jsonify({'error': f'处理过程中发生错误: {e}'}), 500
@app.route('/get/<unique_name>/<filename>')
def get_image(unique_name, filename):
"""获取图像"""
try:
return send_from_directory(os.path.join('runs/detect', unique_name), filename)
except Exception as e:
logging.error(f"提供文件时出错: {e}")
return jsonify({'error': '文件未找到。'}), 404
def run_gradio():
"""运行 Gradio 界面"""
logging.info("启动 Gradio 界面...")
iface.launch(share=True) # 设置 share=True 以便公开访问
def run_flask():
"""运行 Flask 应用"""
logging.info("启动 Flask 应用...")
app.run(host="0.0.0.0", port=5000)
if __name__ == '__main__':
# 启动 Flask 和 Gradio 线程
gradio_thread = Thread(target=run_gradio)
flask_thread = Thread(target=run_flask)
gradio_thread.start()
flask_thread.start()
gradio_thread.join()
flask_thread.join()
'''
#############################
'''
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from YAML
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
model = YOLO("yolov8n.yaml").load("yolov8n.pt") # build from YAML and transfer weights
# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
'''
###################################
'''
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义模型
class SimpleCNN(nn.Module):
def __init__(self, num_classes=10):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, num_classes)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = torch.max_pool2d(x, 2, 2)
x = torch.relu(self.conv2(x))
x = torch.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# 初始化模型和优化器
model = SimpleCNN(num_classes=10)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# 训练模型
num_epochs = 5
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')
# 保存模型(可选)
torch.save(model.state_dict(), 'model.pth')
'''
####################################
'''
from datasets import load_dataset
# 加载数据集
dataset = load_dataset('glue', 'sst2') # 这里的'sst2'是GLUE数据集下的一个子集
# 查看数据集内容
print(dataset['train'][:2]) # 查看训练集的前两个样本
'''
################################
'''
from datasets import load_dataset
# 加载数据集
dataset = load_dataset('fka/awesome-chatgpt-prompts')
# 查看数据集的子集
print(dataset.keys()) # 这将输出数据集中所有可用的子集名称,例如:dict_keys(['train', 'validation', 'test'])
# 访问特定子集的数据
train_dataset = dataset['train']
print(train_dataset[:2]) # 查看训练集的前两个样本
# 如果你知道确切的子集名称,也可以直接加载它
# train_dataset = load_dataset('fka/awesome-chatgpt-prompts', split='train')
'''
#############################
'''
from datasets import load_dataset
dataset = load_dataset("aspnet/yoloensembledata")
#print(dataset)
print(dataset['train'])
print(dataset.keys())
print(dataset['test'])
print(dataset['validation'])
'''
#########################
'''
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from YAML
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
model = YOLO("yolov8n.yaml").load("yolov8n.pt") # build from YAML and transfer weights
# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
'''
###################################
import zipfile
def unzip_file(zip_path, extract_to):
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
zip_file_path = 'Math Equation by YOLO-NAS.v2i.yolov8.zip' # 替换为你的zip文件路径
extract_to_path = 'MathEquationbyYOLO-NAS.v2i.yolov8' # 替换为你希望解压到的目录路径
unzip_file(zip_file_path, extract_to_path)
|