File size: 11,579 Bytes
7823211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc740f
7823211
efc740f
7823211
 
 
 
 
 
 
 
 
efc740f
6601f49
 
efc740f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6601f49
ac548e6
 
6601f49
 
 
 
 
 
 
ac548e6
837dbe0
 
ac548e6
 
 
 
 
 
 
 
 
 
837dbe0
52c8520
 
aebfd4d
 
503d296
 
4a2a8c2
 
52c8520
 
 
4b30ddd
52c8520
 
 
 
 
 
 
 
 
4b30ddd
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
'''
from flask import Flask, request, jsonify, send_from_directory, render_template
from flask_cors import CORS
from ultralytics import YOLO
import gradio as gr
from threading import Thread
import os
import uuid
import logging
from PIL import Image

# 配置日志记录
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S')

# 创建 Flask 应用
app = Flask(__name__, static_folder='static')
CORS(app)

# 定义模型路径
models = {
    '追踪': 'models/yolov8n.pt',
    '检测': 'models/danzhu.pt',
    '分类': 'models/yolov8n-cls.pt',
    '姿势': 'models/yolov8n-pose.pt',
    '分割': 'models/yolov8n-seg.pt'
}

model_instances = {}

def load_model(model_path):
    """加载模型"""
    try:
        logging.info(f"正在从 {model_path} 加载模型...")
        model = YOLO(model_path)
        logging.info(f"模型从 {model_path} 成功加载")
        return model
    except Exception as e:
        logging.error(f"从 {model_path} 加载模型失败: {e}")
        return None

def convert_image_format(img_path, target_format='JPEG'):
    """转换图像格式"""
    try:
        with Image.open(img_path) as img:
            if img.mode != 'RGB':
                img = img.convert('RGB')
            base_name, _ = os.path.splitext(img_path)
            target_path = f"{base_name}.{target_format.lower()}"
            img.save(target_path, format=target_format)
            logging.info(f"图像格式成功转换为 {target_format},保存到 {target_path}")
            return target_path
    except Exception as e:
        logging.error(f"图像格式转换失败: {e}")
        raise

def predict(model_name, img_path):
    """进行预测"""
    try:
        if model_name not in models:
            logging.error("选择的模型无效。")
            return "选择的模型无效。"

        model_path = models[model_name]
        if model_name not in model_instances:
            model_instances[model_name] = load_model(model_path)
        model = model_instances[model_name]

        if model is None:
            logging.error("由于连接错误,模型未加载。")
            return "由于连接错误,模型未加载。"

        unique_name = str(uuid.uuid4())
        save_dir = './runs/detect'
        os.makedirs(save_dir, exist_ok=True)
        logging.info(f"保存目录: {save_dir}")

        # 转换图像格式
        img_path_converted = convert_image_format(img_path, 'JPEG')
        img_path_converted = os.path.normpath(img_path_converted)
        logging.info(f"对 {img_path_converted} 进行预测...")

        results = model.predict(img_path_converted, save=True, project=save_dir, name=unique_name, device='cpu')
        logging.info(f"预测结果: {results}")

        result_dir = os.path.join(save_dir, unique_name)
        result_dir = os.path.normpath(result_dir)
        logging.info(f"结果目录: {result_dir}")

        if not os.path.exists(result_dir):
            logging.error(f"结果目录 {result_dir} 不存在")
            return "未找到预测结果。"

        # 查找预测结果文件
        predicted_img_path = None
        for file in os.listdir(result_dir):
            if file.lower().endswith(('.jpeg', '.jpg')):
                predicted_img_path = os.path.join(result_dir, file)
                break

        if predicted_img_path:
            logging.info(f"找到预测图像: {predicted_img_path}")
            return predicted_img_path
        else:
            logging.error(f"在 {result_dir} 中未找到预测图像")
            return "未找到预测结果。"
    except Exception as e:
        logging.error(f"预测过程中出错: {e}")
        return f"预测过程中出错: {e}"

# 定义 Gradio 界面
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Dropdown(choices=list(models.keys()), label="选择模型"),
        gr.Image(type="filepath", label="输入图像")
    ],
    outputs=gr.Image(type="filepath", label="输出图像")
)

@app.route('/')
def home():
    """主页"""
    return render_template('index.html')

@app.route('/request', methods=['POST'])
def handle_request():
    """处理请求"""
    try:
        selected_model = request.form.get('model')
        if selected_model not in models:
            logging.error("选择的模型无效。")
            return jsonify({'error': '选择的模型无效。'}), 400

        model_path = models[selected_model]
        if selected_model not in model_instances:
            model_instances[selected_model] = load_model(model_path)
        model = model_instances[selected_model]

        if model is None:
            logging.error("由于连接错误,模型未加载。")
            return jsonify({'error': '由于连接错误,模型未加载。'}), 500

        img = request.files.get('img')
        if img is None:
            logging.error("未提供图像。")
            return jsonify({'error': '未提供图像。'}), 400

        img_name = str(uuid.uuid4()) + '.jpg'
        img_path = os.path.join('./img', img_name)
        os.makedirs(os.path.dirname(img_path), exist_ok=True)
        img.save(img_path)
        logging.info(f"图像已保存到: {img_path}")

        save_dir = './runs/detect'
        os.makedirs(save_dir, exist_ok=True)
        unique_name = str(uuid.uuid4())
        logging.info(f"对 {img_path} 进行预测...")
        results = model.predict(img_path, save=True, project=save_dir, name=unique_name, device='cpu')
        logging.info(f"预测结果: {results}")

        result_dir = os.path.join(save_dir, unique_name)

        # 查找预测结果文件
        predicted_img_path = None
        for file in os.listdir(result_dir):
            if file.endswith('.jpeg') or file.endswith('.jpg'):
                predicted_img_path = os.path.join(result_dir, file)
                break

        if predicted_img_path:
            img_url = f'/get/{unique_name}/{os.path.basename(predicted_img_path)}'
            return jsonify({'message': '预测成功!', 'img_path': img_url})
        else:
            saved_files = os.listdir(result_dir)
            logging.error(f"保存目录中包含文件: {saved_files}")
            return jsonify({'error': '未找到预测结果。'}), 500
    except Exception as e:
        logging.error(f"处理请求时出错: {e}")
        return jsonify({'error': f'处理过程中发生错误: {e}'}), 500

@app.route('/get/<unique_name>/<filename>')
def get_image(unique_name, filename):
    """获取图像"""
    try:
        return send_from_directory(os.path.join('runs/detect', unique_name), filename)
    except Exception as e:
        logging.error(f"提供文件时出错: {e}")
        return jsonify({'error': '文件未找到。'}), 404

def run_gradio():
    """运行 Gradio 界面"""
    logging.info("启动 Gradio 界面...")
    iface.launch(share=True)  # 设置 share=True 以便公开访问

def run_flask():
    """运行 Flask 应用"""
    logging.info("启动 Flask 应用...")
    app.run(host="0.0.0.0", port=5000)

if __name__ == '__main__':
    # 启动 Flask 和 Gradio 线程
    gradio_thread = Thread(target=run_gradio)
    flask_thread = Thread(target=run_flask)

    gradio_thread.start()
    flask_thread.start()

    gradio_thread.join()
    flask_thread.join()
'''
#############################

'''
from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from YAML
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolov8n.yaml").load("yolov8n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
'''
###################################
'''
import torch  
import torch.nn as nn  
import torch.optim as optim  
from torchvision import datasets, transforms  
from torch.utils.data import DataLoader  
  
# 定义模型  
class SimpleCNN(nn.Module):  
    def __init__(self, num_classes=10):  
        super(SimpleCNN, self).__init__()  
        self.conv1 = nn.Conv2d(1, 20, 5, 1)  
        self.conv2 = nn.Conv2d(20, 50, 5, 1)  
        self.fc1 = nn.Linear(4*4*50, 500)  
        self.fc2 = nn.Linear(500, num_classes)  
  
    def forward(self, x):  
        x = torch.relu(self.conv1(x))  
        x = torch.max_pool2d(x, 2, 2)  
        x = torch.relu(self.conv2(x))  
        x = torch.max_pool2d(x, 2, 2)  
        x = x.view(-1, 4*4*50)  
        x = torch.relu(self.fc1(x))  
        x = self.fc2(x)  
        return x  
  
# 加载数据集  
transform = transforms.Compose([  
    transforms.ToTensor(),  
    transforms.Normalize((0.5,), (0.5,))  
])  
  
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)  
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)  
  
# 初始化模型和优化器  
model = SimpleCNN(num_classes=10)  
optimizer = optim.Adam(model.parameters(), lr=0.001)  
criterion = nn.CrossEntropyLoss()  
  
# 训练模型  
num_epochs = 5  
for epoch in range(num_epochs):  
    for i, (images, labels) in enumerate(train_loader):  
        # 前向传播  
        outputs = model(images)  
        loss = criterion(outputs, labels)  
  
        # 反向传播和优化  
        optimizer.zero_grad()  
        loss.backward()  
        optimizer.step()  
  
        if (i+1) % 100 == 0:  
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')  
  
# 保存模型(可选)  
torch.save(model.state_dict(), 'model.pth')
'''
####################################
'''
from datasets import load_dataset  
  
# 加载数据集  
dataset = load_dataset('glue', 'sst2')  # 这里的'sst2'是GLUE数据集下的一个子集  
  
# 查看数据集内容  
print(dataset['train'][:2])  # 查看训练集的前两个样本
'''
################################
'''
from datasets import load_dataset  	  
# 加载数据集  
dataset = load_dataset('fka/awesome-chatgpt-prompts')  
 # 查看数据集的子集  
print(dataset.keys())  # 这将输出数据集中所有可用的子集名称,例如:dict_keys(['train', 'validation', 'test']) 
 # 访问特定子集的数据 
train_dataset = dataset['train']  
print(train_dataset[:2])  # 查看训练集的前两个样本
# 如果你知道确切的子集名称,也可以直接加载它  
# train_dataset = load_dataset('fka/awesome-chatgpt-prompts', split='train')
'''
#############################
'''
from datasets import load_dataset
dataset = load_dataset("aspnet/yoloensembledata")
#print(dataset)
print(dataset['train'])
print(dataset.keys())
print(dataset['test'])
print(dataset['validation'])
'''
#########################
'''
from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from YAML
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolov8n.yaml").load("yolov8n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
'''
###################################
import zipfile
 
def unzip_file(zip_path, extract_to):
    with zipfile.ZipFile(zip_path, 'r') as zip_ref:
        zip_ref.extractall(extract_to)
 
zip_file_path = 'Math Equation by YOLO-NAS.v2i.yolov8.zip'  # 替换为你的zip文件路径
extract_to_path = 'MathEquationbyYOLO-NAS.v2i.yolov8'  # 替换为你希望解压到的目录路径
 
unzip_file(zip_file_path, extract_to_path)