Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
@@ -40,18 +40,6 @@ async def predict(input: TextInput):
|
|
40 |
|
41 |
return {"entities": entities}
|
42 |
|
43 |
-
# Iniciar el servidor de FastAPI
|
44 |
-
|
45 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
46 |
-
|
47 |
-
api_thread = Thread(target=start_api, daemon=True)
|
48 |
-
api_thread.start()
|
49 |
-
|
50 |
-
# Configurar Gradio
|
51 |
-
def predict_gradio(text):
|
52 |
-
response = requests.post("http://localhost:8000/predict", json={"text": text})
|
53 |
-
entities = response.json().get("entities", [])
|
54 |
-
return entities
|
55 |
-
|
56 |
-
demo = gr.Interface(fn=predict_gradio, inputs="text", outputs="json")
|
57 |
-
demo.launch(share=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
|
|
40 |
|
41 |
return {"entities": entities}
|
42 |
|
43 |
+
# Iniciar el servidor de FastAPI
|
44 |
+
if __name__ == "__main__":
|
45 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|