kavsar commited on
Commit
c08abba
·
1 Parent(s): 5336311

initial commit

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -33,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ auto_evals/
2
+ venv/
3
+ __pycache__/
4
+ env
5
+ .ipynb_checkpoints
6
+ *ipynb
7
+ .vscode/
8
+
9
+ gpt_4_evals/
10
+ human_evals/
11
+ eval-queue/
12
+ eval-results/
13
+ auto_evals/
14
+
15
+ src/assets/model_counts.html
.pre-commit-config.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ default_language_version:
16
+ python: python3
17
+
18
+ ci:
19
+ autofix_prs: true
20
+ autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
+ autoupdate_schedule: quarterly
22
+
23
+ repos:
24
+ - repo: https://github.com/pre-commit/pre-commit-hooks
25
+ rev: v4.3.0
26
+ hooks:
27
+ - id: check-yaml
28
+ - id: check-case-conflict
29
+ - id: detect-private-key
30
+ - id: check-added-large-files
31
+ args: ['--maxkb=1000']
32
+ - id: requirements-txt-fixer
33
+ - id: end-of-file-fixer
34
+ - id: trailing-whitespace
35
+
36
+ - repo: https://github.com/PyCQA/isort
37
+ rev: 5.12.0
38
+ hooks:
39
+ - id: isort
40
+ name: Format imports
41
+
42
+ - repo: https://github.com/psf/black
43
+ rev: 22.12.0
44
+ hooks:
45
+ - id: black
46
+ name: Format code
47
+ additional_dependencies: ['click==8.0.2']
48
+
49
+ - repo: https://github.com/charliermarsh/ruff-pre-commit
50
+ # Ruff version.
51
+ rev: 'v0.0.267'
52
+ hooks:
53
+ - id: ruff
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
README.md CHANGED
@@ -1,12 +1,36 @@
1
  ---
2
- title: Frontend
3
- emoji: 🏃
4
- colorFrom: yellow
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.44.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: OpenLLM Azerbaijani leaderboard v0.0
3
+ emoji: 🥇
4
+ colorFrom: green
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 4.36.1
8
  app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
16
+
17
+ Results files should have the following format:
18
+ ```
19
+ {
20
+ "config": {
21
+ "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
22
+ "model_name": "path of the model on the hub: org/model",
23
+ "model_sha": "revision on the hub",
24
+ },
25
+ "results": {
26
+ "task_name": {
27
+ "metric_name": score,
28
+ },
29
+ "task_name2": {
30
+ "metric_name": score,
31
+ }
32
+ }
33
+ }
34
+ ```
35
+
36
+ Request files are created automatically by this tool.
app.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from apscheduler.schedulers.background import BackgroundScheduler
4
+ from huggingface_hub import snapshot_download
5
+ import os
6
+ os.environ['CURL_CA_BUNDLE'] = ''
7
+
8
+ from src.display.about import (
9
+ CITATION_BUTTON_LABEL,
10
+ CITATION_BUTTON_TEXT,
11
+ EVALUATION_QUEUE_TEXT,
12
+ INTRODUCTION_TEXT,
13
+ LLM_BENCHMARKS_TEXT,
14
+ TITLE,
15
+ )
16
+ from src.display.css_html_js import custom_css
17
+ from src.display.utils import (
18
+ BENCHMARK_COLS,
19
+ COLS,
20
+ EVAL_COLS,
21
+ EVAL_TYPES,
22
+ NUMERIC_INTERVALS,
23
+ TYPES,
24
+ AutoEvalColumn,
25
+ ModelType,
26
+ fields,
27
+ WeightType,
28
+ Precision
29
+ )
30
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
31
+ from src.populate import get_evaluation_queue_df, get_leaderboard_df
32
+ from src.submission.submit import add_new_eval
33
+
34
+
35
+ def restart_space():
36
+ API.restart_space(repo_id=REPO_ID, token=TOKEN)
37
+
38
+ try:
39
+ print(EVAL_REQUESTS_PATH)
40
+ snapshot_download(
41
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
42
+ )
43
+ except Exception:
44
+ restart_space()
45
+ try:
46
+ print(EVAL_RESULTS_PATH)
47
+ snapshot_download(
48
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
49
+ )
50
+ except Exception:
51
+ restart_space()
52
+
53
+
54
+ raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
55
+ leaderboard_df = original_df.copy()
56
+
57
+ (
58
+ finished_eval_queue_df,
59
+ running_eval_queue_df,
60
+ pending_eval_queue_df,
61
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
62
+
63
+
64
+ # Searching and filtering
65
+ def update_table(
66
+ hidden_df: pd.DataFrame,
67
+ columns: list,
68
+ type_query: list,
69
+ precision_query: str,
70
+ size_query: list,
71
+ show_deleted: bool,
72
+ query: str,
73
+ ):
74
+ filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
75
+ filtered_df = filter_queries(query, filtered_df)
76
+ df = select_columns(filtered_df, columns)
77
+ return df
78
+
79
+
80
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
81
+ return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
82
+
83
+
84
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
85
+ always_here_cols = [
86
+ AutoEvalColumn.model_type_symbol.name,
87
+ AutoEvalColumn.model.name,
88
+ ]
89
+ # We use COLS to maintain sorting
90
+ filtered_df = df[
91
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
92
+ ]
93
+ return filtered_df
94
+
95
+
96
+ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
97
+ final_df = []
98
+ if query != "":
99
+ queries = [q.strip() for q in query.split(";")]
100
+ for _q in queries:
101
+ _q = _q.strip()
102
+ if _q != "":
103
+ temp_filtered_df = search_table(filtered_df, _q)
104
+ if len(temp_filtered_df) > 0:
105
+ final_df.append(temp_filtered_df)
106
+ if len(final_df) > 0:
107
+ filtered_df = pd.concat(final_df)
108
+ filtered_df = filtered_df.drop_duplicates(
109
+ subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
110
+ )
111
+
112
+ return filtered_df
113
+
114
+
115
+ def filter_models(
116
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
117
+ ) -> pd.DataFrame:
118
+ # Show all models
119
+ if show_deleted:
120
+ filtered_df = df
121
+ else: # Show only still on the hub models
122
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
123
+
124
+ type_emoji = [t[0] for t in type_query]
125
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
126
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
127
+
128
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
129
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
130
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
131
+ filtered_df = filtered_df.loc[mask]
132
+
133
+ return filtered_df
134
+
135
+
136
+ demo = gr.Blocks(css=custom_css)
137
+ with demo:
138
+ gr.HTML(TITLE)
139
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
140
+
141
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
142
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
143
+ with gr.Row():
144
+ with gr.Column():
145
+ with gr.Row():
146
+ search_bar = gr.Textbox(
147
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
148
+ show_label=False,
149
+ elem_id="search-bar",
150
+ )
151
+ with gr.Row():
152
+ shown_columns = gr.CheckboxGroup(
153
+ choices=[
154
+ c.name
155
+ for c in fields(AutoEvalColumn)
156
+ if not c.hidden and not c.never_hidden and not c.dummy
157
+ ],
158
+ value=[
159
+ c.name
160
+ for c in fields(AutoEvalColumn)
161
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
162
+ ],
163
+ label="Select columns to show",
164
+ elem_id="column-select",
165
+ interactive=True,
166
+ )
167
+ with gr.Row():
168
+ deleted_models_visibility = gr.Checkbox(
169
+ value=False, label="Show gated/private/deleted models", interactive=True
170
+ )
171
+ with gr.Column(min_width=320):
172
+ #with gr.Box(elem_id="box-filter"):
173
+ filter_columns_type = gr.CheckboxGroup(
174
+ label="Model types",
175
+ choices=[t.to_str() for t in ModelType],
176
+ value=[t.to_str() for t in ModelType],
177
+ interactive=True,
178
+ elem_id="filter-columns-type",
179
+ )
180
+ filter_columns_precision = gr.CheckboxGroup(
181
+ label="Precision",
182
+ choices=[i.value.name for i in Precision],
183
+ value=[i.value.name for i in Precision],
184
+ interactive=True,
185
+ elem_id="filter-columns-precision",
186
+ )
187
+ filter_columns_size = gr.CheckboxGroup(
188
+ label="Model sizes (in billions of parameters)",
189
+ choices=list(NUMERIC_INTERVALS.keys()),
190
+ value=list(NUMERIC_INTERVALS.keys()),
191
+ interactive=True,
192
+ elem_id="filter-columns-size",
193
+ )
194
+
195
+ leaderboard_table = gr.components.Dataframe(
196
+ value=leaderboard_df[
197
+ [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
198
+ + shown_columns.value
199
+ + [AutoEvalColumn.dummy.name]
200
+ ],
201
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
202
+ datatype=TYPES,
203
+ elem_id="leaderboard-table",
204
+ interactive=False,
205
+ visible=True,
206
+ column_widths=["2%", "33%"]
207
+ )
208
+
209
+ # Dummy leaderboard for handling the case when the user uses backspace key
210
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
211
+ value=original_df[COLS],
212
+ headers=COLS,
213
+ datatype=TYPES,
214
+ visible=False,
215
+ )
216
+ search_bar.submit(
217
+ update_table,
218
+ [
219
+ hidden_leaderboard_table_for_search,
220
+ shown_columns,
221
+ filter_columns_type,
222
+ filter_columns_precision,
223
+ filter_columns_size,
224
+ deleted_models_visibility,
225
+ search_bar,
226
+ ],
227
+ leaderboard_table,
228
+ )
229
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
230
+ selector.change(
231
+ update_table,
232
+ [
233
+ hidden_leaderboard_table_for_search,
234
+ shown_columns,
235
+ filter_columns_type,
236
+ filter_columns_precision,
237
+ filter_columns_size,
238
+ deleted_models_visibility,
239
+ search_bar,
240
+ ],
241
+ leaderboard_table,
242
+ queue=True,
243
+ )
244
+
245
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
246
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
247
+
248
+ with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
249
+ with gr.Column():
250
+ with gr.Row():
251
+ gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
252
+
253
+ with gr.Column():
254
+ with gr.Accordion(
255
+ f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
256
+ open=False,
257
+ ):
258
+ with gr.Row():
259
+ finished_eval_table = gr.components.Dataframe(
260
+ value=finished_eval_queue_df,
261
+ headers=EVAL_COLS,
262
+ datatype=EVAL_TYPES,
263
+ row_count=5,
264
+ )
265
+ with gr.Accordion(
266
+ f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
267
+ open=False,
268
+ ):
269
+ with gr.Row():
270
+ running_eval_table = gr.components.Dataframe(
271
+ value=running_eval_queue_df,
272
+ headers=EVAL_COLS,
273
+ datatype=EVAL_TYPES,
274
+ row_count=5,
275
+ )
276
+
277
+ with gr.Accordion(
278
+ f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
279
+ open=False,
280
+ ):
281
+ with gr.Row():
282
+ pending_eval_table = gr.components.Dataframe(
283
+ value=pending_eval_queue_df,
284
+ headers=EVAL_COLS,
285
+ datatype=EVAL_TYPES,
286
+ row_count=5,
287
+ )
288
+ with gr.Row():
289
+ gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
290
+
291
+ with gr.Row():
292
+ with gr.Column():
293
+ model_name_textbox = gr.Textbox(label="Model name")
294
+ revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
295
+ model_type = gr.Dropdown(
296
+ choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
297
+ label="Model type",
298
+ multiselect=False,
299
+ value=None,
300
+ interactive=True,
301
+ )
302
+
303
+ with gr.Column():
304
+ precision = gr.Dropdown(
305
+ choices=[i.value.name for i in Precision if i != Precision.Unknown],
306
+ label="Precision",
307
+ multiselect=False,
308
+ value="float16",
309
+ interactive=True,
310
+ )
311
+ weight_type = gr.Dropdown(
312
+ choices=[i.value.name for i in WeightType],
313
+ label="Weights type",
314
+ multiselect=False,
315
+ value="Original",
316
+ interactive=True,
317
+ )
318
+ base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
319
+
320
+ submit_button = gr.Button("Submit Eval")
321
+ submission_result = gr.Markdown()
322
+ submit_button.click(
323
+ add_new_eval,
324
+ [
325
+ model_name_textbox,
326
+ base_model_name_textbox,
327
+ revision_name_textbox,
328
+ precision,
329
+ weight_type,
330
+ model_type,
331
+ ],
332
+ submission_result,
333
+ )
334
+
335
+ with gr.Row():
336
+ with gr.Accordion("📙 Citation", open=False):
337
+ citation_button = gr.Textbox(
338
+ value=CITATION_BUTTON_TEXT,
339
+ label=CITATION_BUTTON_LABEL,
340
+ lines=20,
341
+ elem_id="citation-button",
342
+ show_copy_button=True,
343
+ )
344
+
345
+ scheduler = BackgroundScheduler()
346
+ scheduler.add_job(restart_space, "interval", seconds=300)
347
+ scheduler.start()
348
+ demo.queue(default_concurrency_limit=40).launch()
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.4.0
6
+ gradio_client==0.7.0
7
+ huggingface-hub>=0.18.0
8
+ matplotlib==3.7.1
9
+ numpy==1.24.2
10
+ pandas==2.0.0
11
+ python-dateutil==2.8.2
12
+ requests==2.28.2
13
+ tqdm==4.65.0
14
+ transformers==4.35.2
15
+ tokenizers>=0.15.0
scripts/create_request_file.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ import re
5
+ from datetime import datetime, timezone
6
+
7
+ import click
8
+ from colorama import Fore
9
+ from huggingface_hub import HfApi, snapshot_download
10
+
11
+ EVAL_REQUESTS_PATH = "eval-queue"
12
+ QUEUE_REPO = "LLM-Beetle/requests"
13
+
14
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
15
+ model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
16
+ weight_types = ("Original", "Delta", "Adapter")
17
+
18
+
19
+ def get_model_size(model_info, precision: str):
20
+ size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
21
+ try:
22
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
23
+ except (AttributeError, TypeError):
24
+ try:
25
+ size_match = re.search(size_pattern, model_info.modelId.lower())
26
+ model_size = size_match.group(0)
27
+ model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
28
+ except AttributeError:
29
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
30
+
31
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
32
+ model_size = size_factor * model_size
33
+ return model_size
34
+
35
+
36
+ def main():
37
+ api = HfApi()
38
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
39
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
40
+
41
+ model_name = click.prompt("Enter model name")
42
+ revision = click.prompt("Enter revision", default="main")
43
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
44
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
45
+ weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
46
+ base_model = click.prompt("Enter base model", default="")
47
+ status = click.prompt("Enter status", default="FINISHED")
48
+
49
+ try:
50
+ model_info = api.model_info(repo_id=model_name, revision=revision)
51
+ except Exception as e:
52
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
53
+ return 1
54
+
55
+ model_size = get_model_size(model_info=model_info, precision=precision)
56
+
57
+ try:
58
+ license = model_info.cardData["license"]
59
+ except Exception:
60
+ license = "?"
61
+
62
+ eval_entry = {
63
+ "model": model_name,
64
+ "base_model": base_model,
65
+ "revision": revision,
66
+ "private": False,
67
+ "precision": precision,
68
+ "weight_type": weight_type,
69
+ "status": status,
70
+ "submitted_time": current_time,
71
+ "model_type": model_type,
72
+ "likes": model_info.likes,
73
+ "params": model_size,
74
+ "license": license,
75
+ }
76
+
77
+ user_name = ""
78
+ model_path = model_name
79
+ if "/" in model_name:
80
+ user_name = model_name.split("/")[0]
81
+ model_path = model_name.split("/")[1]
82
+
83
+ pprint.pprint(eval_entry)
84
+
85
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
86
+ click.echo("continuing...")
87
+
88
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
89
+ os.makedirs(out_dir, exist_ok=True)
90
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
91
+
92
+ with open(out_path, "w") as f:
93
+ f.write(json.dumps(eval_entry))
94
+
95
+ api.upload_file(
96
+ path_or_fileobj=out_path,
97
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
98
+ repo_id=QUEUE_REPO,
99
+ repo_type="dataset",
100
+ commit_message=f"Add {model_name} to eval queue",
101
+ )
102
+ else:
103
+ click.echo("aborting...")
104
+
105
+
106
+ if __name__ == "__main__":
107
+ main()
src/display/about.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from enum import Enum
3
+
4
+ @dataclass
5
+ class Task:
6
+ benchmark: str
7
+ metric: str
8
+ col_name: str
9
+
10
+
11
+ # Init: to update with your specific keys
12
+ class Tasks(Enum):
13
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
14
+ task0 = Task("MMLU", "metric_name", "MMLU")
15
+ task1 = Task("Truthful_qa", "metric_name", "Truthful_qa")
16
+ task2 = Task("ARC", "metric_name", "ARC")
17
+ task3 = Task("HellaSwag", "metric_name", "HellaSwag")
18
+ task4 = Task("GSM8K", "metric_name", "GSM8K")
19
+ task5 = Task("Winogrande", "metric_name", "Winogrande")
20
+
21
+
22
+ # Your leaderboard name
23
+ TITLE = """<h1 align="center" id="space-title"> OpenLLM Azerbaijani leaderboard v0.0</h1>"""
24
+
25
+ # What does your leaderboard evaluate?
26
+ INTRODUCTION_TEXT = """
27
+ Welcome to the Azerbaijani LLM Leaderboard, a pioneering platform dedicated to evaluating Azerbaijani Large Language Models (LLMs). As multilingual LLMs advance, my mission is to specifically highlight models excelling in Azerbaijani, providing benchmarks that drive progress in Azerbaijani LLM and Generative AI for the Azerbaijani language.
28
+ The Leadboard uses [this](https://huggingface.co/collections/malhajar/openllmturkishleadboard-v02-datasets-662a8593043e73938e2f6b1e) currfelly curated benchmarks for evaluation.
29
+ The benchmarks are generated and checked using both GPT-4 and Human annotation rendering the leadboard the most valuable and accurate test in the LLM arena for Azerbaijani evaluation.
30
+
31
+ 🚀 Submit Your Model 🚀
32
+
33
+ Got a Azerbaijani LLM? Submit it for evaluation (Currently Manually, due to the lack of resources! Hoping to automate this with the community's support!), leveraging the Eleuther AI Language Model Evaluation Harness for in-depth performance analysis. Learn more and contribute to Azerbaijani AI advancements on the "About" page.
34
+
35
+ Join the forefront of Azerbaijani language technology. Submit your model, and let's advance Azerbaijani LLM's together!
36
+
37
+ """
38
+
39
+ # Which evaluations are you running? how can people reproduce what you have?
40
+ LLM_BENCHMARKS_TEXT = f"""
41
+ ## How it works
42
+
43
+ ## Reproducibility
44
+
45
+ I use LM-Evaluation-Harness-Turkish, a version of the LM Evaluation Harness adapted for Turkish datasets, to ensure our leaderboard results are both reliable and replicable. Please see https://github.com/malhajar17/lm-evaluation-harness_turkish for more information
46
+
47
+ ## How to Reproduce Results:
48
+
49
+ 1) Set Up the repo: Clone the "lm-evaluation-harness_turkish" from https://github.com/malhajar17/lm-evaluation-harness_turkish and follow the installation instructions.
50
+ 2) Run Evaluations: To get the results as on the leaderboard (Some tests might show small variations), use the following command, adjusting for your model. For example, with the Trendyol model:
51
+ ```python
52
+ lm_eval --model vllm --model_args pretrained=Orbina/Orbita-v0.1 --tasks mmlu_tr_v0.2,arc_tr-v0.2,gsm8k_tr-v0.2,hellaswag_tr-v0.2,truthfulqa_v0.2,winogrande_tr-v0.2 --output /workspace/Orbina/Orbita-v0.1
53
+ ```
54
+ 3) Report Results: The results file generated is then uploaded to the OpenLLM Turkish Leaderboard.
55
+
56
+ ## Notes:
57
+
58
+ - I currently use "vllm" which might differ slightly as per the LM Evaluation Harness.
59
+ - All the tests are using the same configuration used in the original OpenLLMLeadboard preciesly
60
+
61
+ The tasks and few shots parameters are:
62
+ - ARC: 25-shot, *arc-challenge* (`acc_norm`)
63
+ - HellaSwag: 10-shot, *hellaswag* (`acc_norm`)
64
+ - TruthfulQA: 0-shot, *truthfulqa-mc* (`mc2`)
65
+ - MMLU: 5-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (average of all the results `acc`)
66
+ - Winogrande: 5-shot, *winogrande* (`acc`)
67
+ - GSM8k: 5-shot, *gsm8k* (`acc`)
68
+
69
+ """
70
+
71
+ EVALUATION_QUEUE_TEXT = """
72
+ ## Some good practices before submitting a model
73
+
74
+ ### 1) Make sure you can load your model and tokenizer using AutoClasses:
75
+ ```python
76
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
77
+ config = AutoConfig.from_pretrained("your model name", revision=revision)
78
+ model = AutoModel.from_pretrained("your model name", revision=revision)
79
+ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
80
+ ```
81
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
82
+
83
+ Note: make sure your model is public!
84
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
85
+
86
+ ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
87
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
88
+
89
+ ### 3) Make sure your model has an open license!
90
+ This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
91
+
92
+ ### 4) Fill up your model card
93
+ When we add extra information about models to the leaderboard, it will be automatically taken from the model card
94
+
95
+ ## In case of model failure
96
+ If your model is displayed in the `FAILED` category, its execution stopped.
97
+ Make sure you have followed the above steps first.
98
+ If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
99
+ """
100
+
101
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
102
+ CITATION_BUTTON_TEXT = r"""
103
+ @misc{openllm-Turkish-leaderboard,
104
+ author = {Mohamad Alhajar},
105
+ title = {Open LLM Turkish Leaderboard v0.2},
106
+ year = {2024},
107
+ publisher = {Mohamad Alhajar},
108
+ howpublished = "\url{https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard}"
109
+ }
110
+ """
src/display/css_html_js.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+
3
+ .markdown-text {
4
+ font-size: 16px !important;
5
+ }
6
+
7
+ #models-to-add-text {
8
+ font-size: 18px !important;
9
+ }
10
+
11
+ #citation-button span {
12
+ font-size: 16px !important;
13
+ }
14
+
15
+ #citation-button textarea {
16
+ font-size: 16px !important;
17
+ }
18
+
19
+ #citation-button > label > button {
20
+ margin: 6px;
21
+ transform: scale(1.3);
22
+ }
23
+
24
+ #leaderboard-table {
25
+ margin-top: 15px
26
+ }
27
+
28
+ #leaderboard-table-lite {
29
+ margin-top: 15px
30
+ }
31
+
32
+ #search-bar-table-box > div:first-child {
33
+ background: none;
34
+ border: none;
35
+ }
36
+
37
+ #search-bar {
38
+ padding: 0px;
39
+ }
40
+
41
+ /* Hides the final AutoEvalColumn */
42
+ #llm-benchmark-tab-table table td:last-child,
43
+ #llm-benchmark-tab-table table th:last-child {
44
+ display: none;
45
+ }
46
+
47
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
48
+ table td:first-child,
49
+ table th:first-child {
50
+ max-width: 400px;
51
+ overflow: auto;
52
+ white-space: nowrap;
53
+ }
54
+
55
+ .tab-buttons button {
56
+ font-size: 20px;
57
+ }
58
+
59
+ #scale-logo {
60
+ border-style: none !important;
61
+ box-shadow: none;
62
+ display: block;
63
+ margin-left: auto;
64
+ margin-right: auto;
65
+ max-width: 600px;
66
+ }
67
+
68
+ #scale-logo .download {
69
+ display: none;
70
+ }
71
+ #filter_type{
72
+ border: 0;
73
+ padding-left: 0;
74
+ padding-top: 0;
75
+ }
76
+ #filter_type label {
77
+ display: flex;
78
+ }
79
+ #filter_type label > span{
80
+ margin-top: var(--spacing-lg);
81
+ margin-right: 0.5em;
82
+ }
83
+ #filter_type label > .wrap{
84
+ width: 103px;
85
+ }
86
+ #filter_type label > .wrap .wrap-inner{
87
+ padding: 2px;
88
+ }
89
+ #filter_type label > .wrap .wrap-inner input{
90
+ width: 1px
91
+ }
92
+ #filter-columns-type{
93
+ border:0;
94
+ padding:0.5;
95
+ }
96
+ #filter-columns-size{
97
+ border:0;
98
+ padding:0.5;
99
+ }
100
+ #box-filter > .form{
101
+ border: 0
102
+ }
103
+ """
104
+
105
+ get_window_url_params = """
106
+ function(url_params) {
107
+ const params = new URLSearchParams(window.location.search);
108
+ url_params = Object.fromEntries(params);
109
+ return url_params;
110
+ }
111
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime, timezone
3
+
4
+ from huggingface_hub import HfApi
5
+ from huggingface_hub.hf_api import ModelInfo
6
+
7
+
8
+ API = HfApi()
9
+
10
+ def model_hyperlink(link, model_name):
11
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
12
+
13
+
14
+ def make_clickable_model(model_name):
15
+ link = f"https://huggingface.co/{model_name}"
16
+ return model_hyperlink(link, model_name)
17
+
18
+
19
+ def styled_error(error):
20
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
21
+
22
+
23
+ def styled_warning(warn):
24
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
25
+
26
+
27
+ def styled_message(message):
28
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
29
+
30
+
31
+ def has_no_nan_values(df, columns):
32
+ return df[columns].notna().all(axis=1)
33
+
34
+
35
+ def has_nan_values(df, columns):
36
+ return df[columns].isna().any(axis=1)
src/display/utils.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.about import Tasks
7
+
8
+ def fields(raw_class):
9
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
+
11
+
12
+ # These classes are for user facing column names,
13
+ # to avoid having to change them all around the code
14
+ # when a modif is needed
15
+ @dataclass
16
+ class ColumnContent:
17
+ name: str
18
+ type: str
19
+ displayed_by_default: bool
20
+ hidden: bool = False
21
+ never_hidden: bool = False
22
+ dummy: bool = False
23
+
24
+ ## Leaderboard columns
25
+ auto_eval_column_dict = []
26
+ # Init
27
+ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
28
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
+ #Scores
30
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
31
+ for task in Tasks:
32
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
+ # Model information
34
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
35
+ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
36
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
37
+ auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
38
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
39
+ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
40
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
41
+ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
42
+ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
43
+ # Dummy column for the search bar (hidden by the custom CSS)
44
+ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
45
+
46
+ # We use make dataclass to dynamically fill the scores from Tasks
47
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
48
+
49
+ ## For the queue columns in the submission tab
50
+ @dataclass(frozen=True)
51
+ class EvalQueueColumn: # Queue column
52
+ model = ColumnContent("model", "markdown", True)
53
+ revision = ColumnContent("revision", "str", True)
54
+ private = ColumnContent("private", "bool", True)
55
+ precision = ColumnContent("precision", "str", True)
56
+ weight_type = ColumnContent("weight_type", "str", "Original")
57
+ status = ColumnContent("status", "str", True)
58
+
59
+ ## All the model information that we might need
60
+ @dataclass
61
+ class ModelDetails:
62
+ name: str
63
+ display_name: str = ""
64
+ symbol: str = "" # emoji
65
+
66
+
67
+ class ModelType(Enum):
68
+ PT = ModelDetails(name="pretrained", symbol="🟢")
69
+ FT = ModelDetails(name="fine-tuned", symbol="🔶")
70
+ IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
71
+ RL = ModelDetails(name="RL-tuned", symbol="🟦")
72
+ Unknown = ModelDetails(name="", symbol="?")
73
+
74
+ def to_str(self, separator=" "):
75
+ return f"{self.value.symbol}{separator}{self.value.name}"
76
+
77
+ @staticmethod
78
+ def from_str(type):
79
+ if "fine-tuned" in type or "🔶" in type:
80
+ return ModelType.FT
81
+ if "pretrained" in type or "🟢" in type:
82
+ return ModelType.PT
83
+ if "RL-tuned" in type or "🟦" in type:
84
+ return ModelType.RL
85
+ if "instruction-tuned" in type or "⭕" in type:
86
+ return ModelType.IFT
87
+ return ModelType.Unknown
88
+
89
+ class WeightType(Enum):
90
+ Adapter = ModelDetails("Adapter")
91
+ Original = ModelDetails("Original")
92
+ Delta = ModelDetails("Delta")
93
+
94
+ class Precision(Enum):
95
+ float16 = ModelDetails("float16")
96
+ bfloat16 = ModelDetails("bfloat16")
97
+ qt_8bit = ModelDetails("8bit")
98
+ qt_4bit = ModelDetails("4bit")
99
+ qt_GPTQ = ModelDetails("GPTQ")
100
+ Unknown = ModelDetails("?")
101
+
102
+ def from_str(precision):
103
+ if precision in ["torch.float16", "float16"]:
104
+ return Precision.float16
105
+ if precision in ["torch.bfloat16", "bfloat16"]:
106
+ return Precision.bfloat16
107
+ if precision in ["8bit"]:
108
+ return Precision.qt_8bit
109
+ if precision in ["4bit"]:
110
+ return Precision.qt_4bit
111
+ if precision in ["GPTQ", "None"]:
112
+ return Precision.qt_GPTQ
113
+ return Precision.Unknown
114
+
115
+ # Column selection
116
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
117
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
118
+ COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
119
+ TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
120
+
121
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
122
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
123
+
124
+ BENCHMARK_COLS = [t.value.col_name for t in Tasks]
125
+
126
+ NUMERIC_INTERVALS = {
127
+ "?": pd.Interval(-1, 0, closed="right"),
128
+ "~1.5": pd.Interval(0, 2, closed="right"),
129
+ "~3": pd.Interval(2, 4, closed="right"),
130
+ "~7": pd.Interval(4, 9, closed="right"),
131
+ "~13": pd.Interval(9, 20, closed="right"),
132
+ "~35": pd.Interval(20, 45, closed="right"),
133
+ "~60": pd.Interval(45, 70, closed="right"),
134
+ "70+": pd.Interval(70, 10000, closed="right"),
135
+ }
src/envs.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # clone / pull the lmeh eval data
6
+ TOKEN = os.environ.get("HF_TOKEN", None)
7
+
8
+ OWNER = "LLM-Beetle"
9
+ REPO_ID = f"{OWNER}/OpenLLM-Azerbaijani-Leaderboard"
10
+ QUEUE_REPO = "LLM-Beetle/requests"
11
+ RESULTS_REPO = "LLM-Beetle/results"
12
+
13
+ CACHE_PATH=os.getenv("HF_HOME", ".")
14
+
15
+ # Local caches
16
+ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
17
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
18
+
19
+ API = HfApi(token=TOKEN)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import math
4
+ import os
5
+ from dataclasses import dataclass
6
+
7
+ import dateutil
8
+ import numpy as np
9
+
10
+ from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
+ from src.submission.check_validity import is_model_on_hub
13
+
14
+
15
+ @dataclass
16
+ class EvalResult:
17
+ eval_name: str # org_model_precision (uid)
18
+ full_model: str # org/model (path on hub)
19
+ org: str
20
+ model: str
21
+ revision: str # commit hash, "" if main
22
+ results: dict
23
+ precision: Precision = Precision.Unknown
24
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
25
+ weight_type: WeightType = WeightType.Original # Original or Adapter
26
+ architecture: str = "Unknown"
27
+ license: str = "?"
28
+ likes: int = 0
29
+ num_params: int = 0
30
+ date: str = "" # submission date of request file
31
+ still_on_hub: bool = False
32
+
33
+ @classmethod
34
+ def init_from_json_file(self, json_filepath):
35
+ """Inits the result from the specific model result file"""
36
+ with open(json_filepath) as fp:
37
+ data = json.load(fp)
38
+
39
+ config = data.get("config")
40
+
41
+ # Precision
42
+ precision = Precision.from_str(config.get("model_dtype"))
43
+
44
+ # Get model and org
45
+ org_and_model = config.get("model_name", config.get("model_args", None))
46
+ org_and_model = org_and_model.split("/", 1)
47
+
48
+ if len(org_and_model) == 1:
49
+ org = None
50
+ model = org_and_model[0]
51
+ result_key = f"{model}_{precision.value.name}"
52
+ else:
53
+ org = org_and_model[0]
54
+ model = org_and_model[1]
55
+ result_key = f"{org}_{model}_{precision.value.name}"
56
+ full_model = "/".join(org_and_model)
57
+
58
+ still_on_hub, _, model_config = is_model_on_hub(
59
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
60
+ )
61
+ architecture = "?"
62
+ if model_config is not None:
63
+ architectures = getattr(model_config, "architectures", None)
64
+ if architectures:
65
+ architecture = ";".join(architectures)
66
+
67
+ # Extract results available in this file (some results are split in several files)
68
+ results = {}
69
+ for task in Tasks:
70
+ task = task.value
71
+
72
+ # We average all scores of a given metric (not all metrics are present in all files)
73
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
74
+ if accs.size == 0 or any([acc is None for acc in accs]):
75
+ continue
76
+
77
+ mean_acc = np.mean(accs) * 100.0
78
+ results[task.benchmark] = mean_acc
79
+
80
+ return self(
81
+ eval_name=result_key,
82
+ full_model=full_model,
83
+ org=org,
84
+ model=model,
85
+ results=results,
86
+ precision=precision,
87
+ revision= config.get("model_sha", ""),
88
+ still_on_hub=still_on_hub,
89
+ architecture=architecture
90
+ )
91
+
92
+ def update_with_request_file(self, requests_path):
93
+ """Finds the relevant request file for the current model and updates info with it"""
94
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
95
+
96
+ try:
97
+ with open(request_file, "r") as f:
98
+ request = json.load(f)
99
+ self.model_type = ModelType.from_str(request.get("model_type", ""))
100
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
101
+ self.license = request.get("license", "?")
102
+ self.likes = request.get("likes", 0)
103
+ self.num_params = request.get("params", 0)
104
+ self.date = request.get("submitted_time", "")
105
+ except Exception:
106
+ print(f"Could not find request file for {self.org}/{self.model}")
107
+
108
+ def to_dict(self):
109
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
110
+ average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
111
+ data_dict = {
112
+ "eval_name": self.eval_name, # not a column, just a save name,
113
+ AutoEvalColumn.precision.name: self.precision.value.name,
114
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
115
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
116
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
117
+ AutoEvalColumn.architecture.name: self.architecture,
118
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
119
+ AutoEvalColumn.dummy.name: self.full_model,
120
+ AutoEvalColumn.revision.name: self.revision,
121
+ AutoEvalColumn.average.name: average,
122
+ AutoEvalColumn.license.name: self.license,
123
+ AutoEvalColumn.likes.name: self.likes,
124
+ AutoEvalColumn.params.name: self.num_params,
125
+ AutoEvalColumn.still_on_hub.name: self.still_on_hub,
126
+ }
127
+
128
+ for task in Tasks:
129
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
130
+
131
+ return data_dict
132
+
133
+
134
+ def get_request_file_for_model(requests_path, model_name, precision):
135
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
136
+ request_files = os.path.join(
137
+ requests_path,
138
+ f"{model_name}_eval_request_*.json",
139
+ )
140
+ request_files = glob.glob(request_files)
141
+
142
+ # Select correct request file (precision)
143
+ request_file = ""
144
+ request_files = sorted(request_files, reverse=True)
145
+ for tmp_request_file in request_files:
146
+ with open(tmp_request_file, "r") as f:
147
+ req_content = json.load(f)
148
+ if (
149
+ req_content["status"] in ["FINISHED"]
150
+ and req_content["precision"] == precision.split(".")[-1]
151
+ ):
152
+ request_file = tmp_request_file
153
+ return request_file
154
+
155
+
156
+ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
157
+ """From the path of the results folder root, extract all needed info for results"""
158
+ model_result_filepaths = []
159
+
160
+ for root, _, files in os.walk(results_path):
161
+ # We should only have json files in model results
162
+ if len(files) == 0 or any([not f.endswith(".json") for f in files]):
163
+ continue
164
+
165
+ # Sort the files by date
166
+ try:
167
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
168
+ except dateutil.parser._parser.ParserError:
169
+ files = [files[-1]]
170
+
171
+ for file in files:
172
+ model_result_filepaths.append(os.path.join(root, file))
173
+
174
+ eval_results = {}
175
+ for model_result_filepath in model_result_filepaths:
176
+ # Creation of result
177
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
178
+ eval_result.update_with_request_file(requests_path)
179
+
180
+ # Store results of same eval together
181
+ eval_name = eval_result.eval_name
182
+ if eval_name in eval_results.keys():
183
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
184
+ else:
185
+ eval_results[eval_name] = eval_result
186
+
187
+ results = []
188
+ for v in eval_results.values():
189
+ try:
190
+ v.to_dict() # we test if the dict version is complete
191
+ results.append(v)
192
+ except KeyError: # not all eval values present
193
+ continue
194
+
195
+ return results
src/populate.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.formatting import has_no_nan_values, make_clickable_model
7
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
+ from src.leaderboard.read_evals import get_raw_eval_results
9
+
10
+
11
+ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
+ raw_data = get_raw_eval_results(results_path, requests_path)
13
+ all_data_json = [v.to_dict() for v in raw_data]
14
+
15
+ df = pd.DataFrame.from_records(all_data_json)
16
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
17
+ df = df[cols].round(decimals=2)
18
+
19
+ # filter out if any of the benchmarks have not been produced
20
+ df = df[has_no_nan_values(df, benchmark_cols)]
21
+ return raw_data, df
22
+
23
+
24
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
25
+ entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
26
+ all_evals = []
27
+
28
+ for entry in entries:
29
+ if ".json" in entry:
30
+ file_path = os.path.join(save_path, entry)
31
+ with open(file_path) as fp:
32
+ data = json.load(fp)
33
+
34
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
35
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
36
+
37
+ all_evals.append(data)
38
+ elif ".md" not in entry:
39
+ # this is a folder
40
+ sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
41
+ for sub_entry in sub_entries:
42
+ file_path = os.path.join(save_path, entry, sub_entry)
43
+ with open(file_path) as fp:
44
+ data = json.load(fp)
45
+
46
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
47
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
48
+ all_evals.append(data)
49
+
50
+ pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
51
+ running_list = [e for e in all_evals if e["status"] == "RUNNING"]
52
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
53
+ df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
54
+ df_running = pd.DataFrame.from_records(running_list, columns=cols)
55
+ df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
56
+ return df_finished[cols], df_running[cols], df_pending[cols]
src/submission/check_validity.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo
10
+ from transformers import AutoConfig
11
+ from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config
12
+
13
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
14
+ """Checks if the model card and license exist and have been filled"""
15
+ try:
16
+ card = ModelCard.load(repo_id)
17
+ except huggingface_hub.utils.EntryNotFoundError:
18
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
+
20
+ # Enforce license metadata
21
+ if card.data.license is None:
22
+ if not ("license_name" in card.data and "license_link" in card.data):
23
+ return False, (
24
+ "License not found. Please add a license to your model card using the `license` metadata or a"
25
+ " `license_name`/`license_link` pair."
26
+ )
27
+
28
+ # Enforce card content
29
+ if len(card.text) < 200:
30
+ return False, "Please add a description to your model card, it is too short."
31
+
32
+ return True, ""
33
+
34
+
35
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
36
+ """Makes sure the model is on the hub, and uses a valid configuration (in the latest transformers version)"""
37
+ try:
38
+ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
39
+ if test_tokenizer:
40
+ tokenizer_config = get_tokenizer_config(model_name)
41
+ if tokenizer_config is not None:
42
+ tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
43
+ else:
44
+ tokenizer_class_candidate = config.tokenizer_class
45
+
46
+
47
+ tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
48
+ if tokenizer_class is None:
49
+ return (
50
+ False,
51
+ f"uses {tokenizer_class_candidate}, which is not in a transformers release, therefore not supported at the moment.",
52
+ None
53
+ )
54
+ return True, None, config
55
+
56
+ except ValueError:
57
+ return (
58
+ False,
59
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
60
+ None
61
+ )
62
+
63
+ except Exception as e:
64
+ return False, "was not found on hub!", None
65
+
66
+
67
+ def get_model_size(model_info: ModelInfo, precision: str):
68
+ """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
69
+ try:
70
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
71
+ except (AttributeError, TypeError):
72
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
73
+
74
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
75
+ model_size = size_factor * model_size
76
+ return model_size
77
+
78
+ def get_model_arch(model_info: ModelInfo):
79
+ """Gets the model architecture from the configuration"""
80
+ return model_info.config.get("architectures", "Unknown")
81
+
82
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
83
+ depth = 1
84
+ file_names = []
85
+ users_to_submission_dates = defaultdict(list)
86
+
87
+ for root, _, files in os.walk(requested_models_dir):
88
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
89
+ if current_depth == depth:
90
+ for file in files:
91
+ if not file.endswith(".json"):
92
+ continue
93
+ with open(os.path.join(root, file), "r") as f:
94
+ info = json.load(f)
95
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
96
+
97
+ # Select organisation
98
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
99
+ continue
100
+ organisation, _ = info["model"].split("/")
101
+ users_to_submission_dates[organisation].append(info["submitted_time"])
102
+
103
+ return set(file_names), users_to_submission_dates
src/submission/submit.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datetime import datetime, timezone
4
+
5
+ from src.display.formatting import styled_error, styled_message, styled_warning
6
+ from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
+ from src.submission.check_validity import (
8
+ already_submitted_models,
9
+ check_model_card,
10
+ get_model_size,
11
+ is_model_on_hub,
12
+ )
13
+
14
+ REQUESTED_MODELS = None
15
+ USERS_TO_SUBMISSION_DATES = None
16
+
17
+ def add_new_eval(
18
+ model: str,
19
+ base_model: str,
20
+ revision: str,
21
+ precision: str,
22
+ weight_type: str,
23
+ model_type: str,
24
+ ):
25
+ global REQUESTED_MODELS
26
+ global USERS_TO_SUBMISSION_DATES
27
+ if not REQUESTED_MODELS:
28
+ REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
+
30
+ user_name = ""
31
+ model_path = model
32
+ if "/" in model:
33
+ user_name = model.split("/")[0]
34
+ model_path = model.split("/")[1]
35
+
36
+ precision = precision.split(" ")[0]
37
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
+
39
+ if model_type is None or model_type == "":
40
+ return styled_error("Please select a model type.")
41
+
42
+ # Does the model actually exist?
43
+ if revision == "":
44
+ revision = "main"
45
+
46
+ # Is the model on the hub?
47
+ if weight_type in ["Delta", "Adapter"]:
48
+ base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
+ if not base_model_on_hub:
50
+ return styled_error(f'Base model "{base_model}" {error}')
51
+
52
+ # Is the model info correctly filled?
53
+ try:
54
+ model_info = API.model_info(repo_id=model, revision=revision)
55
+ except Exception:
56
+ return styled_error("Could not get your model information. Please fill it up properly.")
57
+
58
+ model_size = get_model_size(model_info=model_info, precision=precision)
59
+
60
+ # Were the model card and license filled?
61
+ try:
62
+ license = model_info.cardData["license"]
63
+ except Exception:
64
+ return styled_error("Please select a license for your model")
65
+
66
+ modelcard_OK, error_msg = check_model_card(model)
67
+ if not modelcard_OK:
68
+ return styled_error(error_msg)
69
+
70
+ # Seems good, creating the eval
71
+ print("Adding new eval")
72
+
73
+ eval_entry = {
74
+ "model": model,
75
+ "base_model": base_model,
76
+ "revision": revision,
77
+ "precision": precision,
78
+ "weight_type": weight_type,
79
+ "status": "PENDING",
80
+ "submitted_time": current_time,
81
+ "model_type": model_type,
82
+ "likes": model_info.likes,
83
+ "params": model_size,
84
+ "license": license,
85
+ }
86
+
87
+ # Check for duplicate submission
88
+ if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
89
+ return styled_warning("This model has been already submitted.")
90
+
91
+ print("Creating eval file")
92
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
93
+ os.makedirs(OUT_DIR, exist_ok=True)
94
+ out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
95
+
96
+ with open(out_path, "w") as f:
97
+ f.write(json.dumps(eval_entry))
98
+
99
+ print("Uploading eval file")
100
+ API.upload_file(
101
+ path_or_fileobj=out_path,
102
+ path_in_repo=out_path.split("eval-queue/")[1],
103
+ repo_id=QUEUE_REPO,
104
+ repo_type="dataset",
105
+ commit_message=f"Add {model} to eval queue",
106
+ )
107
+
108
+ # Remove the local file
109
+ os.remove(out_path)
110
+
111
+ return styled_message(
112
+ "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
113
+ )