asigalov61's picture
Update app.py
79d84fe verified
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateDrums(input_midi, input_num_tokens, input_top_k_value, input_max_drums_per_step):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 393 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 4, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_VER4_RST_VEL_4L_9107_steps_0.5467_loss_0.8231_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
input_num_tokens = max(16, min(2048, input_num_tokens))
print('-' * 70)
print('Input file name:', fn)
print('Req num toks:', input_num_tokens)
print('Req top_k value:', input_top_k_value)
print('Req max number of drums pitches:', input_max_drums_per_step)
print('-' * 70)
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
escore_notes = [e for e in escore_notes if e[3] != 9]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes)
dscore = TMIDIX.delta_score_notes(escore_notes)
cscore = TMIDIX.chordify_score([d[1:] for d in dscore])
cscore_melody = [c[0] for c in cscore]
comp_times = [t[1] for t in dscore if t[1] != 0]
comp_times = comp_times + [comp_times[-1]]
#===============================================================================
print('=' * 70)
print('Sample output events', escore_notes[:5])
print('=' * 70)
print('Generating...')
output = []
temperature=0.9
max_drums_limit=input_max_drums_per_step
num_memory_tokens=4096
for c in comp_times[:input_num_tokens]:
output.append(c)
x = torch.tensor([output] * 1, dtype=torch.long, device=DEVICE)
o = 128
ncount = 0
time = 0
ntime = output[-1]
while o > 127 and ncount < max_drums_limit and time < ntime:
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
filter_logits_fn=top_k,
filter_kwargs={'k': input_top_k_value},
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 128 <= o < 256:
time += (o-128)
ncount = 0
if 256 < o < 384:
ncount += 1
if o > 127 and time < ntime:
x = torch.cat((x, out), 1)
x_output = x.tolist()[0][len(output):]
output.extend(x_output)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output[:12])
print('=' * 70)
if len(output) != 0:
song = output
song_f = []
time = 0
dtime = 0
ntime = 0
ptime = 0
dur = 32
vel = 90
vels = [100, 120]
pitch = 0
channel = 0
idx = 0
for ss in song:
if 0 <= ss < 128:
dtime = ptime = time
time += cscore[idx][0][0] * 32
for c in cscore[idx]:
song_f.append(['note', time, c[1] * 32, c[2], c[3], c[4], c[5]])
dtime = time
idx += 1
if 128 <= ss < 256:
dtime += (ss-128) * 32
if 256 < ss < 384:
pitch = (ss-256)
if 384 < ss < 393:
vel = (ss-384) * 15
song_f.append(['note', dtime, dur, 9, pitch, vel, 128])
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Drums Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n"
"SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n"
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)"
" for faster execution and endless generation"
)
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_tokens = gr.Slider(16, 2048, value=256, step=16, label="Number of composition chords to generate drums for")
input_top_k_value = gr.Slider(1, 50, value=5, step=1, label="Model sampling top_k value")
input_max_drums_per_step = gr.Slider(1, 10, value=5, step=1, label="Maximum number of drums pitches per step")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens, input_top_k_value, input_max_drums_per_step],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Ultimate-Drums-Transformer-Melody-Seed-1.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-Melody-Seed-2.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-Melody-Seed-3.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-Melody-Seed-4.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-Melody-Seed-5.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-Melody-Seed-6.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-MI-Seed-1.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-MI-Seed-2.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-MI-Seed-3.mid", 128, 5, 5],
["Ultimate-Drums-Transformer-MI-Seed-4.mid", 128, 5, 5]],
[input_midi, input_num_tokens, input_top_k_value, input_max_drums_per_step],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
GenerateDrums,
cache_examples=True,
)
app.queue().launch()