#================================================================================== # https://huggingface.co/spaces/asigalov61/MIDI-Templates-Inpainter #================================================================================== print('=' * 70) print('MIDI Templates Inpainter Gradio App') print('=' * 70) print('Loading core MIDI Templates Inpainter modules...') import os import copy import pickle import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main MIDI Templates Inpainter modules...') os.environ['USE_FLASH_ATTENTION'] = '1' import torch torch.set_float32_matmul_precision('medium') torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_cudnn_sdp(True) from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_1_23_2 import * import random import tqdm print('=' * 70) print('Loading aux MIDI Templates Inpainter modules...') import matplotlib.pyplot as plt import gradio as gr import spaces print('=' * 70) print('PyTorch version:', torch.__version__) print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== GMT_MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' MAX_NOTES_TO_INPAINT = 1280 #================================================================================== print('=' * 70) print('Instantiating Giant Music Transformer model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 8192 PAD_IDX = 19463 gmt_model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 2048, depth = 8, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) gmt_model = AutoregressiveWrapper(gmt_model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') gmt_model_checkpoint = hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer', filename=GMT_MODEL_CHECKPOINT) gmt_model.load_state_dict(torch.load(gmt_model_checkpoint, map_location='cpu', weights_only=True)) gmt_model = torch.compile(gmt_model, mode='max-autotune') print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== print('Loading MIDI Templates dataset...') MIDI_Templates_Dataset = hf_hub_download(repo_id='asigalov61/MIDI-Templates', repo_type='dataset', filename='MIDI_Templates_16384_Processed_MIDIs_CC_BY_NC_SA.pickle') with open(MIDI_Templates_Dataset, 'rb') as f: midi_templates = pickle.load(f) print('Done!') print('=' * 70) #================================================================================== def toks_to_score(score_tokens): song_f = [] time = 0 dur = 8 vel = 90 pitch = 60 channel = 0 patch = 40 for m in score_tokens: if 0 <= m < 256: time += m elif 256 < m < 512: dur = m-256 elif 511 < m < 641: patch = m-512 if patch == 40: channel = 0 elif patch == 24: channel = 1 elif patch == 35: channel = 2 elif patch == 128: channel = 9 elif 640 < m < 768: pitch = m-640 elif 768 < m < 896: vel = m-768 song_f.append(['note', time, dur, channel, pitch, vel, patch]) return song_f #================================================================================== def score_to_toks(score): score.sort(key=lambda x: x[1]) tokens = [] tokens.extend([19461, 19331, 19332+score[0][6]]) pe = score[0] for e in score: #======================================================= # Timings... # Cliping all values... delta_time = max(0, min(255, e[1]-pe[1])) # Durations and channels dur = max(0, min(255, e[2])) cha = max(0, min(15, e[3])) # Patches if cha == 9: # Drums patch will be == 128 pat = 128 else: pat = e[6] # Pitches ptc = max(1, min(127, e[4])) # Velocities # Calculating octo-velocity vel = max(8, min(127, e[5])) velocity = round(vel / 15)-1 dur_vel = (8 * dur) + velocity pat_ptc = (129 * pat) + ptc tokens.extend([delta_time, dur_vel+256, pat_ptc+2304]) pe = e return tokens #================================================================================== def first_note_idx(score_tokens, patch): for i, t in enumerate(score_tokens): if 2304 <= t < 18945: pat = (t-2304) // 129 if pat == patch: break return i #================================================================================== @spaces.GPU def Inpaint_MIDI_Template(midi_template_idx, inpainting_mode, model_temperature, model_sampling_top_p ): #=============================================================================== def inpaint(melody_chords, inpaint_MIDI_patch=[0], number_of_prime_tokens=0, number_of_memory_tokens=4096, temperature=1.0, model_sampling_top_p_value=0.96, verbose=False ): #===================================================================== if verbose: print('=' * 70) print('Giant Music Transformer Inpainting Model Generator') print('=' * 70) #===================================================================== out2 = [] for m in melody_chords[:number_of_prime_tokens]: out2.append(m) #===================================================================== for i in tqdm.tqdm(range(number_of_prime_tokens, len(melody_chords))): cpatch = (melody_chords[i]-2304) // 129 if 2304 <= melody_chords[i] < 18945 and cpatch in inpaint_MIDI_patch: inp = torch.LongTensor(out2[-number_of_memory_tokens:]).cuda() with ctx: out1 = gmt_model.generate(inp, 1, filter_logits_fn=top_p, filter_kwargs={'thres': model_sampling_top_p_value}, temperature=temperature, return_prime=False, verbose=False) max_acc_sample = out1.tolist()[0][0] cpitch = (max_acc_sample-2304) % 129 pat = (max_acc_sample-2304) // 129 out2.extend([((cpatch * 129) + cpitch)+2304]) else: out2.append(melody_chords[i]) #===================================================================== song_f = [] time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 for ss in out2: if 0 <= ss < 256: time += ss if 256 <= ss < 2304: dur = ((ss-256) // 8) vel = (((ss-256) % 8)+1) * 15 if 2304 <= ss < 18945: patch = (ss-2304) // 129 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-2304) % 129 song_f.append(['note', time, dur, channel, pitch, vel, patch ]) #===================================================================== if verbose: print('Done!') print('=' * 70) return song_f #=============================================================================== print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('Requested settings:') print('=' * 70) print('MIDI template idx:', midi_template_idx) print('Parts to inpaint:', inpainting_mode) print('Model temperature:', model_temperature) print('Model sampling top p:', model_sampling_top_p) print('=' * 70) #================================================================== gmt_model.to(device_type) gmt_model.eval() #================================================================== print('Selecting and loading MIDI template...') if midi_template_idx > -1: midi_template = midi_templates[midi_template_idx] else: midi_template = random.choice(midi_templates) mt_idx = midi_templates.index(midi_template) mt_md5 = midi_template[0] inp_score = toks_to_score(midi_template[1])[:MAX_NOTES_TO_INPAINT] print('=' * 70) print('Selected MIDI template idx:', mt_idx) print('Selected MIDI template md5:', mt_md5) #================================================================== print('=' * 70) print('Prepping patches...') mel_pat = 40 acc_pat = 24 bass_pat = 35 ipatches = [] if 'Melody' in inpainting_mode: ipatches.append(mel_pat) if 'Accompaniment' in inpainting_mode: ipatches.append(acc_pat) if 'Base' in inpainting_mode: ipatches.append(bass_pat) if not inpainting_mode: ipatches.append(mel_pat) print('=' * 70) #================================================================== print('Inpainting...') inp_score_tokens = score_to_toks(inp_score) out_score = inpaint(inp_score_tokens, ipatches, 300) print('Done!') print('=' * 70) #================================================================== print('Patching final score...') output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(out_score) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) print('Sample events', output_score[:3]) print('=' * 70) fn1 = "Inpainted-MIDI-Template-" + str(mt_idx) + "-" + str(mt_md5) detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, output_signature = 'MIDI Templates Inpainter', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches, timings_multiplier=16 ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=SOUDFONT_PATH, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, timings_multiplier=16, return_plt=True, ) print('Output MIDI file name:', output_midi) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_audio, output_plot, output_midi #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #================================================================================== with gr.Blocks() as demo: #================================================================================== gr.Markdown("

MIDI Templates Inpainter

") gr.Markdown("

Inpaint pitches in MIDI templates to create unique songs

") gr.HTML("""

Duplicate in Hugging Face

for faster execution and endless generation! """) #================================================================================== gr.Markdown("## MIDI Templates options") midi_template_idx = gr.Slider(-1, 16383, value=-1, step=1, label="Desired MIDI template number") inpainting_mode = gr.CheckboxGroup(['Melody', 'Accompaniment', 'Base'], value=['Melody'], label="Which MIDI template parts to inpaint") gr.Markdown("## Model options") model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value") generate_btn = gr.Button("Inpaint", variant="primary") gr.Markdown("## Inpainting results") output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="MIDI score plot") output_midi = gr.File(label="MIDI file", file_types=[".mid"]) generate_btn.click(Inpaint_MIDI_Template, [midi_template_idx, inpainting_mode, model_temperature, model_sampling_top_p ], [output_audio, output_plot, output_midi, ] ) #================================================================================== demo.launch() #==================================================================================