Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,12 @@
|
|
1 |
import chromadb
|
2 |
from chromadb.utils import embedding_functions
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
from transformers import pipeline
|
5 |
import streamlit as st
|
6 |
import fitz # PyMuPDF for PDF parsing
|
7 |
|
8 |
-
# # Step 1: Setup ChromaDB
|
9 |
-
# def setup_chromadb():
|
10 |
-
# # Initialize ChromaDB in-memory instance
|
11 |
-
# client = chromadb.Client()
|
12 |
-
# try:
|
13 |
-
# client.delete_collection("pdf_data")
|
14 |
-
# print("Existing collection 'pdf_data' deleted.")
|
15 |
-
# except:
|
16 |
-
# print("Collection 'pdf_data' not found, creating a new one.")
|
17 |
-
# # Create a new collection with the embedding function
|
18 |
-
# ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
19 |
-
# collection = client.create_collection("pdf_data", embedding_function=ef)
|
20 |
-
# return client, collection
|
21 |
-
|
22 |
|
23 |
-
# import chromadb
|
24 |
-
from chromadb.config import Settings
|
25 |
|
26 |
# Configure ChromaDB with persistent SQLite database
|
27 |
config = Settings(
|
@@ -29,9 +14,6 @@ config = Settings(
|
|
29 |
chroma_db_impl="sqlite",
|
30 |
)
|
31 |
|
32 |
-
|
33 |
-
import chromadb
|
34 |
-
|
35 |
# Initialize persistent client with SQLite
|
36 |
def setup_chromadb():
|
37 |
client = chromadb.PersistentClient(path="./chromadb_data")
|
@@ -43,36 +25,6 @@ def setup_chromadb():
|
|
43 |
)
|
44 |
return client, collection
|
45 |
|
46 |
-
|
47 |
-
# Initialize ChromaDB client
|
48 |
-
# def setup_chromadb():
|
49 |
-
# try:
|
50 |
-
# client = chromadb.Client(config)
|
51 |
-
# collections = client.list_collections()
|
52 |
-
# print(f"Existing collections: {collections}")
|
53 |
-
# if "pdf_data" in [c.name for c in collections]:
|
54 |
-
# client.delete_collection("pdf_data")
|
55 |
-
# print("Existing collection 'pdf_data' deleted.")
|
56 |
-
# collection = client.create_collection(
|
57 |
-
# "pdf_data",
|
58 |
-
# embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
|
59 |
-
# model_name="sentence-transformers/all-MiniLM-L6-v2"
|
60 |
-
# ),
|
61 |
-
# )
|
62 |
-
# return client, collection
|
63 |
-
# except Exception as e:
|
64 |
-
# print("Error setting up ChromaDB:", e)
|
65 |
-
# raise e
|
66 |
-
|
67 |
-
|
68 |
-
# Step 2: Extract Text from PDF
|
69 |
-
# def extract_text_from_pdf(pdf_path):
|
70 |
-
# pdf_text = ""
|
71 |
-
# with fitz.open(pdf_path) as doc:
|
72 |
-
# for page in doc:
|
73 |
-
# pdf_text += page.get_text()
|
74 |
-
# return pdf_text
|
75 |
-
|
76 |
def extract_text_from_pdf(uploaded_file):
|
77 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
78 |
text = ""
|
@@ -80,7 +32,6 @@ def extract_text_from_pdf(uploaded_file):
|
|
80 |
text += page.get_text()
|
81 |
return text
|
82 |
|
83 |
-
# Step 3: Add Extracted Text to Vector Database
|
84 |
def add_pdf_text_to_db(collection, pdf_text):
|
85 |
sentences = pdf_text.split("\n") # Split text into lines for granularity
|
86 |
for idx, sentence in enumerate(sentences):
|
@@ -91,7 +42,6 @@ def add_pdf_text_to_db(collection, pdf_text):
|
|
91 |
metadatas={"line_number": idx, "text": sentence}
|
92 |
)
|
93 |
|
94 |
-
# Step 4: Query Function
|
95 |
def query_pdf_data(collection, query, retriever_model):
|
96 |
results = collection.query(
|
97 |
query_texts=[query],
|
@@ -134,73 +84,5 @@ def main():
|
|
134 |
st.error(f"Error extracting text: {e}")
|
135 |
|
136 |
|
137 |
-
|
138 |
-
# if uploaded_file:
|
139 |
-
# st.write("Extracting text and populating the database...")
|
140 |
-
# pdf_text = extract_text_from_pdf(uploaded_file)
|
141 |
-
# add_pdf_text_to_db(collection, pdf_text)
|
142 |
-
# st.success("PDF text has been added to the database. You can now query it!")
|
143 |
-
|
144 |
-
# # Query Input
|
145 |
-
# query = st.text_input("Enter your query about the PDF:")
|
146 |
-
# if query:
|
147 |
-
# try:
|
148 |
-
# answer, metadata = query_pdf_data(collection, query, retriever_model)
|
149 |
-
# st.subheader("Answer:")
|
150 |
-
# st.write(answer[0]['generated_text'])
|
151 |
-
# st.subheader("Retrieved Context:")
|
152 |
-
# for meta in metadata[0]:
|
153 |
-
# st.write(meta)
|
154 |
-
# except Exception as e:
|
155 |
-
# st.error(f"An error occurred: {str(e)}")
|
156 |
-
|
157 |
if __name__ == "__main__":
|
158 |
main()
|
159 |
-
|
160 |
-
|
161 |
-
# import tempfile
|
162 |
-
# import PyPDF2
|
163 |
-
# import streamlit as st
|
164 |
-
# from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
165 |
-
|
166 |
-
# # Load pre-trained GPT-3 model and tokenizer
|
167 |
-
# tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
|
168 |
-
# model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
|
169 |
-
|
170 |
-
|
171 |
-
# def extract_text_from_pdf(file_path):
|
172 |
-
# text = ""
|
173 |
-
# with open(file_path, "rb") as f:
|
174 |
-
# reader = PyPDF2.PdfFileReader(f)
|
175 |
-
# for page_num in range(reader.numPages):
|
176 |
-
# text += reader.getPage(page_num).extractText()
|
177 |
-
# return text
|
178 |
-
|
179 |
-
# def generate_response(user_input):
|
180 |
-
# input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
181 |
-
# output = model.generate(input_ids, max_length=100, num_return_sequences=1, temperature=0.7)
|
182 |
-
# response = tokenizer.decode(output[0], skip_special_tokens=True)
|
183 |
-
# return response
|
184 |
-
|
185 |
-
# def main():
|
186 |
-
# st.title("PDF Chatbot")
|
187 |
-
|
188 |
-
# pdf_file = st.file_uploader("Upload an pdf file", type=["pdf"], accept_multiple_files=False)
|
189 |
-
|
190 |
-
# if pdf_file is not None:
|
191 |
-
# with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
192 |
-
# tmp_file.write(pdf_file.read())
|
193 |
-
# st.success("PDF file successfully uploaded and stored temporally.")
|
194 |
-
# file_path = tmp_file.name
|
195 |
-
# pdf_text = extract_text_from_pdf(file_path)
|
196 |
-
# st.text_area("PDF Content", pdf_text)
|
197 |
-
# else:
|
198 |
-
# st.markdown('File not found!')
|
199 |
-
|
200 |
-
# user_input = st.text_input("You:", "")
|
201 |
-
# if st.button("Send"):
|
202 |
-
# response = generate_response(user_input)
|
203 |
-
# st.text_area("Chatbot:", response)
|
204 |
-
|
205 |
-
# if __name__ == "__main__":
|
206 |
-
# main()
|
|
|
1 |
import chromadb
|
2 |
from chromadb.utils import embedding_functions
|
3 |
+
from chromadb.config import Settings
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from transformers import pipeline
|
6 |
import streamlit as st
|
7 |
import fitz # PyMuPDF for PDF parsing
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
# Configure ChromaDB with persistent SQLite database
|
12 |
config = Settings(
|
|
|
14 |
chroma_db_impl="sqlite",
|
15 |
)
|
16 |
|
|
|
|
|
|
|
17 |
# Initialize persistent client with SQLite
|
18 |
def setup_chromadb():
|
19 |
client = chromadb.PersistentClient(path="./chromadb_data")
|
|
|
25 |
)
|
26 |
return client, collection
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def extract_text_from_pdf(uploaded_file):
|
29 |
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
30 |
text = ""
|
|
|
32 |
text += page.get_text()
|
33 |
return text
|
34 |
|
|
|
35 |
def add_pdf_text_to_db(collection, pdf_text):
|
36 |
sentences = pdf_text.split("\n") # Split text into lines for granularity
|
37 |
for idx, sentence in enumerate(sentences):
|
|
|
42 |
metadatas={"line_number": idx, "text": sentence}
|
43 |
)
|
44 |
|
|
|
45 |
def query_pdf_data(collection, query, retriever_model):
|
46 |
results = collection.query(
|
47 |
query_texts=[query],
|
|
|
84 |
st.error(f"Error extracting text: {e}")
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if __name__ == "__main__":
|
88 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|