Spaces:
Sleeping
Sleeping
File size: 16,608 Bytes
3a2241a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import uuid
import os
import io
import time
from functools import lru_cache
from dotenv import load_dotenv
from database import SessionLocal, ChatMessage
from qdrant_client import QdrantClient
from qdrant_client.models import (
PointStruct, Distance, VectorParams,
Filter, FieldCondition, MatchValue, PointIdsList
)
from sentence_transformers import SentenceTransformer
from groq import Groq
import pdfplumber
from tabulate import tabulate
import pytesseract
from PIL import Image, ImageEnhance, ImageFilter
import fitz # PyMuPDF
import torch
from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
import warnings
warnings.filterwarnings("ignore", message="Could get FontBBox from font descriptor*")
# Configure Tesseract path (Windows specific)
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
load_dotenv()
# Initialize clients
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
qdrant = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
)
COLLECTION_NAME = "chatbot_sessions"
PDF_COLLECTION_NAME = "pdf_documents"
MAX_HISTORY_LENGTH = 5
SUMMARY_CACHE_SIZE = 100
embedder = SentenceTransformer("all-MiniLM-L6-v2")
# Initialize DePlot
device = "cuda" if torch.cuda.is_available() else "cpu"
deplot_processor = Pix2StructProcessor.from_pretrained("google/deplot")
deplot_model = Pix2StructForConditionalGeneration.from_pretrained("google/deplot").to(device)
def create_collections():
"""Initialize Qdrant collections if they don't exist"""
existing_collections = [c.name for c in qdrant.get_collections().collections]
if COLLECTION_NAME not in existing_collections:
qdrant.recreate_collection(
collection_name=COLLECTION_NAME,
vectors_config=VectorParams(size=384, distance=Distance.COSINE),
timeout=1200
)
qdrant.create_payload_index(
collection_name=COLLECTION_NAME,
field_name="session_id",
field_schema="keyword"
)
if PDF_COLLECTION_NAME not in existing_collections:
qdrant.recreate_collection(
collection_name=PDF_COLLECTION_NAME,
vectors_config=VectorParams(size=384, distance=Distance.COSINE),
timeout=1200
)
qdrant.create_payload_index(
collection_name=PDF_COLLECTION_NAME,
field_name="document_id",
field_schema="keyword"
)
def generate_session_id():
"""Generate a unique session ID"""
return str(uuid.uuid4())
def store_message(session_id, role, message):
"""Store message in both database and vector store"""
db = SessionLocal()
chat_record = ChatMessage(session_id=session_id, role=role, message=message)
db.add(chat_record)
db.commit()
db.refresh(chat_record)
db.close()
# Store in vector database
embedding = embedder.encode(message).tolist()
point = PointStruct(
id=int(uuid.uuid4().int % 1e12),
vector=embedding,
payload={
"session_id": session_id,
"role": role,
"message": message,
"timestamp": int(time.time())
}
)
qdrant.upsert(collection_name=COLLECTION_NAME, points=[point])
# Clean up old messages
existing = qdrant.scroll(
collection_name=COLLECTION_NAME,
scroll_filter=Filter(must=[
FieldCondition(key="session_id", match=MatchValue(value=session_id))
]),
limit=100,
with_payload=True
)
if len(existing[0]) > MAX_HISTORY_LENGTH:
old_points = sorted(existing[0], key=lambda x: x.payload.get("timestamp", 0))
old_ids = [p.id for p in old_points[:-MAX_HISTORY_LENGTH]]
qdrant.delete(
collection_name=COLLECTION_NAME,
points_selector=PointIdsList(points=old_ids)
)
@lru_cache(maxsize=SUMMARY_CACHE_SIZE)
def get_conversation_summary(session_id):
"""Generate a concise summary of the conversation"""
db = SessionLocal()
messages = db.query(ChatMessage).filter(
ChatMessage.session_id == session_id
).order_by(ChatMessage.id).all()
db.close()
if not messages:
return "No previous conversation history"
conversation = "\n".join(
f"{msg.role}: {msg.message}" for msg in messages[-10:]
)
summary_prompt = (
"Create a very concise summary (1-2 sentences max) focusing on:\n"
"1. Main topic being discussed\n"
"2. Any specific numbers/dates mentioned\n"
"3. The most recent question\n\n"
"Conversation:\n" + conversation
)
try:
response = client.chat.completions.create(
model="meta-llama/llama-4-scout-17b-16e-instruct",
messages=[{"role": "user", "content": summary_prompt}],
temperature=0.3,
max_tokens=100
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"Summary generation failed: {e}")
return "Current conversation context unavailable"
def get_session_history(session_id):
"""Retrieve conversation history from vector store"""
result = qdrant.scroll(
collection_name=COLLECTION_NAME,
scroll_filter=Filter(must=[
FieldCondition(key="session_id", match=MatchValue(value=session_id))
]),
limit=MAX_HISTORY_LENGTH,
with_payload=True
)
messages = sorted(result[0], key=lambda x: x.payload.get("timestamp", 0))
return [{"role": p.payload["role"], "content": p.payload["message"]} for p in messages]
def extract_pdf_content(pdf_path):
"""Extract text and images from PDF"""
full_text = ""
images = []
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
full_text += page_text + "\n\n"
tables = page.extract_tables()
for table in tables:
formatted_table = tabulate(table, headers="firstrow", tablefmt="grid")
full_text += f"\n\nTABLE:\n{formatted_table}\n\n"
if page.images:
page_image = page.to_image(resolution=300)
for img in page.images:
try:
bbox = (img["x0"], img["top"], img["x1"], img["bottom"])
cropped = page_image.original.crop(bbox)
images.append(cropped)
except Exception as e:
print(f"Image extraction failed: {e}")
return full_text, images
def extract_chart_data(image: Image.Image) -> str:
"""Extract text from chart images using OCR"""
try:
image = image.convert("L")
image = image.filter(ImageFilter.SHARPEN)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(2.0)
chart_text = pytesseract.image_to_string(image, config="--psm 6")
if chart_text.strip():
return f"Chart contains: {chart_text.strip()}"
else:
width, height = image.size
return f"Visual chart approximately {width}x{height} pixels with data points"
except Exception as e:
return f"[Chart content could not be extracted: {str(e)}]"
def extract_charts_with_deplot(pdf_path: str, document_id: str, chunk_size: int = 500):
"""
Extract charts from PDF using DePlot and store in vector database
Args:
pdf_path: Path to PDF file
document_id: Unique document identifier
chunk_size: Size for text chunks
Returns:
List of processing results
"""
doc = fitz.open(pdf_path)
results = []
for page_num in range(len(doc)):
page = doc[page_num]
image_list = page.get_images(full=True)
for img_index, img in enumerate(image_list):
try:
# Extract and process image
xref = img[0]
base_image = doc.extract_image(xref)
image_bytes = base_image["image"]
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# Extract table data
text_table = "Extract all data from this chart in table format with clear headers."
inputs_table = deplot_processor(images=image, text=text_table, return_tensors="pt").to(device)
table_ids = deplot_model.generate(**inputs_table, max_new_tokens=512)
table_data = deplot_processor.decode(table_ids[0], skip_special_tokens=True)
# Generate summary
text_summary = ("Provide a comprehensive summary of this chart including: "
"1. Chart title and type, 2. Key trends and patterns, "
"3. Notable data points, 4. Overall conclusion.")
inputs_summary = deplot_processor(images=image, text=text_summary, return_tensors="pt").to(device)
summary_ids = deplot_model.generate(**inputs_summary, max_new_tokens=512)
chart_summary = deplot_processor.decode(summary_ids[0], skip_special_tokens=True)
# Create and store chunks
combined_content = f"CHART SUMMARY:\n{chart_summary}\n\nEXTRACTED DATA:\n{table_data}"
chunks = []
current_chunk = ""
for para in [p for p in combined_content.split('\n') if p.strip()]:
if len(current_chunk) + len(para) + 1 <= chunk_size:
current_chunk += para + "\n"
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = para + "\n"
if current_chunk:
chunks.append(current_chunk.strip())
# Store chunks in vector database
points = []
for i, chunk in enumerate(chunks):
embedding = embedder.encode(chunk).tolist()
point = PointStruct(
id=int(uuid.uuid4().int % 1e12),
vector=embedding,
payload={
"document_id": document_id,
"page": page_num + 1,
"image_index": img_index + 1,
"type": "chart_chunk",
"chunk_index": i,
"total_chunks": len(chunks),
"content": chunk,
"full_summary": chart_summary,
"full_table": table_data
}
)
points.append(point)
if points:
qdrant.upsert(collection_name=PDF_COLLECTION_NAME, points=points)
results.append({
"page": page_num + 1,
"image_index": img_index + 1,
"summary": chart_summary,
"table_data": table_data,
"num_chunks": len(chunks)
})
except Exception as e:
print(f"β Error processing page {page_num+1} image {img_index+1}: {str(e)}")
continue
return results
def store_pdf_chunks(text: str, document_id: str):
"""Store PDF text content in vector database"""
paragraphs = text.split('\n\n')
chunks = []
current_chunk = ""
for para in paragraphs:
if len(current_chunk) + len(para) < 1000:
current_chunk += para + "\n\n"
else:
chunks.append(current_chunk.strip())
current_chunk = para + "\n\n"
if current_chunk:
chunks.append(current_chunk.strip())
for chunk in chunks:
embedding = embedder.encode(chunk).tolist()
point = PointStruct(
id=int(uuid.uuid4().int % 1e12),
vector=embedding,
payload={
"document_id": document_id,
"content": chunk,
"source": "pdf"
}
)
qdrant.upsert(collection_name=PDF_COLLECTION_NAME, points=[point])
def process_pdf(pdf_path: str):
"""Process a PDF file and store its contents"""
text, images = extract_pdf_content(pdf_path)
ocr_text = ""
chart_summaries = []
for i, image in enumerate(images):
try:
ocr_text += pytesseract.image_to_string(image)
chart_summary = extract_chart_data(image)
chart_summaries.append(f"Chart {i+1}: {chart_summary}")
except Exception as e:
print(f"Image processing failed: {e}")
chart_summaries.append(f"Chart {i+1}: [Content not extracted]")
full_text = (
"PDF TEXT CONTENT:\n" + text +
"\n\nIMAGE TEXT CONTENT:\n" + ocr_text +
"\n\nCHART SUMMARIES:\n" + "\n".join(chart_summaries)
)
document_id = os.path.basename(pdf_path)
store_pdf_chunks(full_text, document_id)
# Process charts with DePlot
deplot_results = extract_charts_with_deplot(pdf_path, document_id)
print(f"β
DePlot processed {len(deplot_results)} charts")
def get_relevant_context(user_message: str, session_id: str):
"""Retrieve relevant context from vector stores"""
question_embedding = embedder.encode(user_message).tolist()
# Search PDF content
pdf_results = qdrant.search(
collection_name=PDF_COLLECTION_NAME,
query_vector=question_embedding,
limit=10,
score_threshold=0.4
)
# Get conversation history
history = get_session_history(session_id)
recent_history = history[-3:]
pdf_context = "\n".join([hit.payload.get("content", "") for hit in pdf_results])
history_context = "\n".join([msg["content"] for msg in recent_history])
return pdf_context, history_context
def get_verified_context(session_id):
"""Retrieve messages containing numerical data"""
db = SessionLocal()
messages = db.query(ChatMessage).filter(
ChatMessage.session_id == session_id
).order_by(ChatMessage.id.desc()).limit(10).all()
db.close()
return [msg for msg in messages if any(char.isdigit() for char in msg.message)]
def chat_with_session(session_id, user_message):
"""Main chat function with context-aware responses"""
try:
uuid_obj = uuid.UUID(session_id)
except ValueError:
return "β Invalid session ID format. Please generate a valid session."
# Get all context sources
conversation_summary = get_conversation_summary(session_id)
pdf_context, history_context = get_relevant_context(user_message, session_id)
verified_contexts = get_verified_context(session_id)
verified_text = "\n".join([msg.message for msg in verified_contexts])
# Construct system prompt
system_prompt = (
"You are a context-aware assistant. Follow these rules strictly:\n"
"1. CONVERSATION SUMMARY:\n" + conversation_summary + "\n\n"
"2. Maintain context for follow-up questions\n"
"3. DOCUMENT CONTEXT:\n" + (pdf_context if pdf_context else "None") + "\n\n"
"4. VERIFIED NUMERICAL CONTEXT:\n" + (verified_text if verified_text else "None") + "\n\n"
"5. Respond clearly and concisely to the latest user query while maintaining continuity.\n"
)
# Prepare messages for LLM
messages = [{"role": "system", "content": system_prompt}]
messages.extend(get_session_history(session_id)[-3:])
messages.append({"role": "user", "content": user_message})
try:
completion = client.chat.completions.create(
model="meta-llama/llama-4-scout-17b-16e-instruct",
messages=messages,
temperature=0.7,
max_tokens=1024,
top_p=0.9
)
reply = completion.choices[0].message.content
except Exception as e:
print(f"β LLM generation failed: {e}")
return "Sorry, I couldn't generate a response at this time."
# Store conversation
store_message(session_id, "user", user_message)
store_message(session_id, "assistant", reply)
get_conversation_summary.cache_clear()
return reply
# Initialize collections on startup
create_collections() |