Upload 5 files
Browse files- .env +1 -0
- requirements.txt +3 -0
- sql.py +70 -0
- sqlite.py +36 -0
- student.db +0 -0
.env
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
GOOGLE_API_KEY = "AIzaSyBZhxdQ0BFLAeHAp9LOc2nqJCgddXq89rU"
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
google-generativeai
|
| 3 |
+
python-dotenv
|
sql.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dotenv import load_dotenv
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import os
|
| 4 |
+
import sqlite3
|
| 5 |
+
import google.generativeai as genai
|
| 6 |
+
|
| 7 |
+
# Load environment variables
|
| 8 |
+
load_dotenv()
|
| 9 |
+
|
| 10 |
+
# Configure Gemini API
|
| 11 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
| 12 |
+
|
| 13 |
+
# Function to load Gemini model and generate SQL query
|
| 14 |
+
def get_gemini_response(question, prompt):
|
| 15 |
+
model = genai.GenerativeModel('gemini-pro')
|
| 16 |
+
full_prompt = prompt + "\n\nUser Query: " + question # Better structuring
|
| 17 |
+
response = model.generate_content(full_prompt)
|
| 18 |
+
sql_query = response.text.strip() # Clean the response
|
| 19 |
+
return sql_query
|
| 20 |
+
|
| 21 |
+
# Function to retrieve query results from the database
|
| 22 |
+
def read_sql_query(sql, db):
|
| 23 |
+
try:
|
| 24 |
+
conn = sqlite3.connect(db)
|
| 25 |
+
cur = conn.cursor()
|
| 26 |
+
cur.execute(sql)
|
| 27 |
+
rows = cur.fetchall()
|
| 28 |
+
conn.close()
|
| 29 |
+
return rows
|
| 30 |
+
except Exception as e:
|
| 31 |
+
return [("Error:", str(e))] # Return error message if query fails
|
| 32 |
+
|
| 33 |
+
# Define prompt
|
| 34 |
+
prompt = """
|
| 35 |
+
You are an expert in SQL query generation. Your task is to convert natural language questions into valid SQL queries based on the given database schema.
|
| 36 |
+
|
| 37 |
+
Instructions:
|
| 38 |
+
- The SQL database schema will be provided.
|
| 39 |
+
- Generate a syntactically correct SQL query based on the input question.
|
| 40 |
+
- The SQL query should be optimized and free from unnecessary clauses.
|
| 41 |
+
- Do not include SQL keywords or formatting like triple backticks (```) in the response.
|
| 42 |
+
- If the question is ambiguous, generate the most probable SQL query.
|
| 43 |
+
|
| 44 |
+
Example:
|
| 45 |
+
|
| 46 |
+
Input: "How many students are in the database?"
|
| 47 |
+
Output: SELECT COUNT(*) FROM STUDENT_INFO;
|
| 48 |
+
|
| 49 |
+
Input: "List all students in CLASS 10 section A."
|
| 50 |
+
Output: SELECT * FROM STUDENT_INFO WHERE CLASS = '10' AND SECTION = 'A';
|
| 51 |
+
|
| 52 |
+
Input: "Show the names of students in Data Science Section."
|
| 53 |
+
Output: SELECT NAME FROM STUDENT_INFO WHERE SECTION = 'Data Science';
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
# Streamlit App
|
| 57 |
+
st.set_page_config(page_title="SQL Query Generator")
|
| 58 |
+
st.header("Gemini App To Retrieve SQL Data")
|
| 59 |
+
|
| 60 |
+
question = st.text_input("Enter your question:", key="input")
|
| 61 |
+
submit = st.button("Generate SQL Query")
|
| 62 |
+
|
| 63 |
+
# If submit is clicked
|
| 64 |
+
if submit:
|
| 65 |
+
sql_query = get_gemini_response(question, prompt)
|
| 66 |
+
st.subheader("Generated SQL Query")
|
| 67 |
+
st.code(sql_query, language="sql") # Show SQL query
|
| 68 |
+
|
| 69 |
+
response = read_sql_query(sql_query, "student.db")
|
| 70 |
+
|
sqlite.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sqlite3
|
| 2 |
+
|
| 3 |
+
# Establish a connection to SQLite
|
| 4 |
+
connection=sqlite3.connect("student.db")
|
| 5 |
+
|
| 6 |
+
# Create a cursor object to insert record, create table
|
| 7 |
+
cursor=connection.cursor()
|
| 8 |
+
|
| 9 |
+
## Create the table
|
| 10 |
+
table_info = """
|
| 11 |
+
CREATE TABLE STUDENT_INFO(NAME VARCHAR(25), CLASS VARCHAR(25),
|
| 12 |
+
SECTION VARCHAR(25));
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
cursor.execute(table_info)
|
| 16 |
+
|
| 17 |
+
# Insert Some more records
|
| 18 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Ashish', 'Data Scientist', 'A')''')
|
| 19 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Devesh', 'Software Developer', 'A')''')
|
| 20 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Tanuja', 'Cyber Security', 'A')''')
|
| 21 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Hardeep', 'UX Design', 'A')''')
|
| 22 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Rahul', 'Data Analyst', 'A')''')
|
| 23 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Pawan', 'Data Scientist', 'A')''')
|
| 24 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Neeraj', 'Backend Developer', 'A')''')
|
| 25 |
+
cursor.execute('''Insert Into STUDENT_INFO values('Neeraja', 'Data Scientist', 'A')''')
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Display All the records
|
| 29 |
+
print("The Inserted records are")
|
| 30 |
+
data=cursor.execute('''Select * from STUDENT_INFO''')
|
| 31 |
+
for row in data:
|
| 32 |
+
print(row)
|
| 33 |
+
|
| 34 |
+
# Commit your changes in the Database
|
| 35 |
+
connection.commit()
|
| 36 |
+
connection.close()
|
student.db
ADDED
|
Binary file (8.19 kB). View file
|
|
|