Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""app.py""" | |
import streamlit as st | |
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer | |
# Load pre-trained GPT-2 model and tokenizer | |
model_name = "gpt2" | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
# Define function to generate blog post | |
def generate_blogpost(topic): | |
input_text = f"Blog post about {topic}:" | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
# Generate text | |
output = model.generate(input_ids, max_length=500, num_return_sequences=1, no_repeat_ngram_size=2) | |
# Decode and return text | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
# Streamlit app | |
def main(): | |
st.title("Blog Post Generator") | |
# Sidebar input for topic | |
topic = st.sidebar.text_input("Enter topic for the blog post", "a crazy person driving a car") | |
# Generate button | |
if st.sidebar.button("Generate Blog Post"): | |
blogpost = generate_blogpost(topic) | |
st.subheader(f"Generated Blog Post on {topic}:") | |
st.write(blogpost) | |
if __name__ == "__main__": | |
main() | |