Spaces:
Runtime error
Runtime error
requirements.txt
Browse filesPillow==10.1.0
timm==0.9.10
torch==2.1.2
torchvision==0.16.2
transformers==4.36.0
sentencepiece==0.1.99
opencv-python
gradio
peft
app.py
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# encoding: utf-8
|
| 3 |
+
|
| 4 |
+
import timm
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import traceback
|
| 8 |
+
import re
|
| 9 |
+
import torch
|
| 10 |
+
import argparse
|
| 11 |
+
from transformers import AutoModel, AutoTokenizer
|
| 12 |
+
|
| 13 |
+
# Suppress FutureWarnings
|
| 14 |
+
import warnings
|
| 15 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 16 |
+
|
| 17 |
+
# README, How to run demo on different devices
|
| 18 |
+
# For CPU usage, you can simply run:
|
| 19 |
+
# python app.py
|
| 20 |
+
|
| 21 |
+
# Argparser
|
| 22 |
+
parser = argparse.ArgumentParser(description='Demo Application Configuration')
|
| 23 |
+
parser.add_argument('--device', type=str, default='cpu', choices=['cpu'], help='Device to run the model on. Currently only "cpu" is supported.')
|
| 24 |
+
parser.add_argument('--dtype', type=str, default='fp32', choices=['fp32'], help='Data type for model computations. "fp32" is standard for CPU.')
|
| 25 |
+
args = parser.parse_args()
|
| 26 |
+
|
| 27 |
+
device = args.device
|
| 28 |
+
|
| 29 |
+
# Since we're using CPU, set dtype to float32
|
| 30 |
+
if args.dtype == 'fp32':
|
| 31 |
+
dtype = torch.float32
|
| 32 |
+
else:
|
| 33 |
+
dtype = torch.float32 # Fallback to float32 if an unsupported dtype is somehow passed
|
| 34 |
+
|
| 35 |
+
# Load model
|
| 36 |
+
model_path = 'openbmb/MiniCPM-V-2'
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
print("Loading model...")
|
| 40 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(device=device, dtype=dtype)
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 42 |
+
print("Model loaded successfully.")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error loading model: {e}")
|
| 45 |
+
traceback.print_exc()
|
| 46 |
+
exit(1)
|
| 47 |
+
|
| 48 |
+
model.eval()
|
| 49 |
+
|
| 50 |
+
ERROR_MSG = "Error, please retry"
|
| 51 |
+
model_name = 'MiniCPM-V 2.0'
|
| 52 |
+
|
| 53 |
+
# Define UI components parameters
|
| 54 |
+
form_radio = {
|
| 55 |
+
'choices': ['Beam Search', 'Sampling'],
|
| 56 |
+
'value': 'Sampling',
|
| 57 |
+
'interactive': True,
|
| 58 |
+
'label': 'Decode Type'
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
# Beam Search Parameters
|
| 62 |
+
num_beams_slider = {
|
| 63 |
+
'minimum': 1, # Changed minimum from 0 to 1 as 0 beams doesn't make sense
|
| 64 |
+
'maximum': 10, # Increased maximum for more flexibility
|
| 65 |
+
'value': 3,
|
| 66 |
+
'step': 1,
|
| 67 |
+
'interactive': True,
|
| 68 |
+
'label': 'Num Beams'
|
| 69 |
+
}
|
| 70 |
+
repetition_penalty_slider = {
|
| 71 |
+
'minimum': 0.5, # Changed minimum to a reasonable value
|
| 72 |
+
'maximum': 3.0,
|
| 73 |
+
'value': 1.2,
|
| 74 |
+
'step': 0.01,
|
| 75 |
+
'interactive': True,
|
| 76 |
+
'label': 'Repetition Penalty'
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
# Sampling Parameters
|
| 80 |
+
repetition_penalty_slider2 = {
|
| 81 |
+
'minimum': 0.5,
|
| 82 |
+
'maximum': 3.0,
|
| 83 |
+
'value': 1.05,
|
| 84 |
+
'step': 0.01,
|
| 85 |
+
'interactive': True,
|
| 86 |
+
'label': 'Repetition Penalty'
|
| 87 |
+
}
|
| 88 |
+
max_new_tokens_slider = {
|
| 89 |
+
'minimum': 1,
|
| 90 |
+
'maximum': 4096,
|
| 91 |
+
'value': 1024,
|
| 92 |
+
'step': 1,
|
| 93 |
+
'interactive': True,
|
| 94 |
+
'label': 'Max New Tokens'
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
top_p_slider = {
|
| 98 |
+
'minimum': 0.1, # Avoid extreme low values
|
| 99 |
+
'maximum': 1.0,
|
| 100 |
+
'value': 0.8,
|
| 101 |
+
'step': 0.05,
|
| 102 |
+
'interactive': True,
|
| 103 |
+
'label': 'Top P'
|
| 104 |
+
}
|
| 105 |
+
top_k_slider = {
|
| 106 |
+
'minimum': 10, # Avoid extreme low values
|
| 107 |
+
'maximum': 200,
|
| 108 |
+
'value': 100,
|
| 109 |
+
'step': 1,
|
| 110 |
+
'interactive': True,
|
| 111 |
+
'label': 'Top K'
|
| 112 |
+
}
|
| 113 |
+
temperature_slider = {
|
| 114 |
+
'minimum': 0.1, # Avoid extreme low values
|
| 115 |
+
'maximum': 2.0,
|
| 116 |
+
'value': 0.7,
|
| 117 |
+
'step': 0.05,
|
| 118 |
+
'interactive': True,
|
| 119 |
+
'label': 'Temperature'
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
def create_component(params, comp='Slider'):
|
| 123 |
+
"""
|
| 124 |
+
Utility function to create Gradio UI components based on parameters.
|
| 125 |
+
"""
|
| 126 |
+
if comp == 'Slider':
|
| 127 |
+
return gr.Slider(
|
| 128 |
+
minimum=params['minimum'],
|
| 129 |
+
maximum=params['maximum'],
|
| 130 |
+
value=params['value'],
|
| 131 |
+
step=params['step'],
|
| 132 |
+
interactive=params['interactive'],
|
| 133 |
+
label=params['label']
|
| 134 |
+
)
|
| 135 |
+
elif comp == 'Radio':
|
| 136 |
+
return gr.Radio(
|
| 137 |
+
choices=params['choices'],
|
| 138 |
+
value=params['value'],
|
| 139 |
+
interactive=params['interactive'],
|
| 140 |
+
label=params['label']
|
| 141 |
+
)
|
| 142 |
+
elif comp == 'Button':
|
| 143 |
+
return gr.Button(
|
| 144 |
+
value=params['value'],
|
| 145 |
+
interactive=True
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
|
| 149 |
+
"""
|
| 150 |
+
Function to handle the chat interaction.
|
| 151 |
+
"""
|
| 152 |
+
print("Entering chat function...")
|
| 153 |
+
default_params = {"num_beams": 3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
|
| 154 |
+
if params is None:
|
| 155 |
+
params = default_params
|
| 156 |
+
if img is None:
|
| 157 |
+
return -1, "Error, invalid image, please upload a new image", None, None
|
| 158 |
+
try:
|
| 159 |
+
image = img.convert('RGB')
|
| 160 |
+
answer, context, _ = model.chat(
|
| 161 |
+
image=image,
|
| 162 |
+
msgs=msgs,
|
| 163 |
+
context=None,
|
| 164 |
+
tokenizer=tokenizer,
|
| 165 |
+
**params
|
| 166 |
+
)
|
| 167 |
+
# Clean up the answer text
|
| 168 |
+
res = re.sub(r'(<box>.*</box>)', '', answer)
|
| 169 |
+
res = res.replace('<ref>', '').replace('</ref>', '').replace('<box>', '').replace('</box>', '')
|
| 170 |
+
answer = res
|
| 171 |
+
return -1, answer, None, None
|
| 172 |
+
except Exception as err:
|
| 173 |
+
print(err)
|
| 174 |
+
traceback.print_exc()
|
| 175 |
+
return -1, ERROR_MSG, None, None
|
| 176 |
+
|
| 177 |
+
def upload_img(image, _chatbot, _app_session):
|
| 178 |
+
"""
|
| 179 |
+
Function to handle image uploads.
|
| 180 |
+
"""
|
| 181 |
+
print("Uploading image...")
|
| 182 |
+
try:
|
| 183 |
+
image = Image.fromarray(image)
|
| 184 |
+
_app_session['sts'] = None
|
| 185 |
+
_app_session['ctx'] = []
|
| 186 |
+
_app_session['img'] = image
|
| 187 |
+
_chatbot.append(('', 'Image uploaded successfully, I am ready to take up your queries'))
|
| 188 |
+
print("Image uploaded successfully.")
|
| 189 |
+
return _chatbot, _app_session
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"Error uploading image: {e}")
|
| 192 |
+
traceback.print_exc()
|
| 193 |
+
return _chatbot, _app_session
|
| 194 |
+
|
| 195 |
+
def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
|
| 196 |
+
"""
|
| 197 |
+
Function to handle user input and generate responses.
|
| 198 |
+
"""
|
| 199 |
+
print("Respond function called.")
|
| 200 |
+
if _app_cfg.get('ctx', None) is None:
|
| 201 |
+
_chat_bot.append((_question, 'Please upload an image to detect'))
|
| 202 |
+
return '', _chat_bot, _app_cfg
|
| 203 |
+
|
| 204 |
+
_context = _app_cfg['ctx'].copy()
|
| 205 |
+
if _context:
|
| 206 |
+
_context.append({"role": "user", "content": _question})
|
| 207 |
+
else:
|
| 208 |
+
_context = [{"role": "user", "content": _question}]
|
| 209 |
+
print('<User>:', _question)
|
| 210 |
+
|
| 211 |
+
if params_form == 'Beam Search':
|
| 212 |
+
params = {
|
| 213 |
+
'sampling': False,
|
| 214 |
+
'num_beams': num_beams,
|
| 215 |
+
'repetition_penalty': repetition_penalty,
|
| 216 |
+
"max_new_tokens": 896
|
| 217 |
+
}
|
| 218 |
+
else:
|
| 219 |
+
params = {
|
| 220 |
+
'sampling': True,
|
| 221 |
+
'top_p': top_p,
|
| 222 |
+
'top_k': top_k,
|
| 223 |
+
'temperature': temperature,
|
| 224 |
+
'repetition_penalty': repetition_penalty_2,
|
| 225 |
+
"max_new_tokens": 896
|
| 226 |
+
}
|
| 227 |
+
code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params)
|
| 228 |
+
print('<Assistant>:', _answer)
|
| 229 |
+
|
| 230 |
+
_context.append({"role": "assistant", "content": _answer})
|
| 231 |
+
_chat_bot.append((_question, _answer))
|
| 232 |
+
if code == 0:
|
| 233 |
+
_app_cfg['ctx'] = _context
|
| 234 |
+
_app_cfg['sts'] = sts
|
| 235 |
+
return '', _chat_bot, _app_cfg
|
| 236 |
+
|
| 237 |
+
def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
|
| 238 |
+
"""
|
| 239 |
+
Function to handle the regeneration of the last assistant response.
|
| 240 |
+
"""
|
| 241 |
+
print("Regenerate button clicked.")
|
| 242 |
+
if len(_chat_bot) <= 1:
|
| 243 |
+
_chat_bot.append(('Regenerate', 'No question for regeneration.'))
|
| 244 |
+
return '', _chat_bot, _app_cfg
|
| 245 |
+
elif _chat_bot[-1][0] == 'Regenerate':
|
| 246 |
+
return '', _chat_bot, _app_cfg
|
| 247 |
+
else:
|
| 248 |
+
_question = _chat_bot[-1][0]
|
| 249 |
+
_chat_bot = _chat_bot[:-1]
|
| 250 |
+
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
|
| 251 |
+
return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
|
| 252 |
+
|
| 253 |
+
# Building the Gradio Interface
|
| 254 |
+
with gr.Blocks() as demo:
|
| 255 |
+
with gr.Row():
|
| 256 |
+
with gr.Column(scale=1, min_width=300):
|
| 257 |
+
# Decode Type Selection
|
| 258 |
+
params_form = create_component(form_radio, comp='Radio')
|
| 259 |
+
|
| 260 |
+
# Beam Search Settings
|
| 261 |
+
with gr.Accordion("Beam Search"):
|
| 262 |
+
num_beams = create_component(num_beams_slider)
|
| 263 |
+
repetition_penalty = create_component(repetition_penalty_slider)
|
| 264 |
+
|
| 265 |
+
# Sampling Settings
|
| 266 |
+
with gr.Accordion("Sampling"):
|
| 267 |
+
top_p = create_component(top_p_slider)
|
| 268 |
+
top_k = create_component(top_k_slider)
|
| 269 |
+
temperature = create_component(temperature_slider)
|
| 270 |
+
repetition_penalty_2 = create_component(repetition_penalty_slider2)
|
| 271 |
+
|
| 272 |
+
# Regenerate Button
|
| 273 |
+
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
|
| 274 |
+
|
| 275 |
+
with gr.Column(scale=3, min_width=500):
|
| 276 |
+
# Application State
|
| 277 |
+
app_session = gr.State({'sts': None, 'ctx': None, 'img': None})
|
| 278 |
+
|
| 279 |
+
# Image Upload Component
|
| 280 |
+
bt_pic = gr.Image(label="Upload an image to start")
|
| 281 |
+
|
| 282 |
+
# Chatbot Display
|
| 283 |
+
chat_bot = gr.Chatbot(label="Ask anything about the image")
|
| 284 |
+
|
| 285 |
+
# Text Input for User Messages
|
| 286 |
+
txt_message = gr.Textbox(label="Input text")
|
| 287 |
+
|
| 288 |
+
# Define Actions
|
| 289 |
+
regenerate.click(
|
| 290 |
+
regenerate_button_clicked,
|
| 291 |
+
[
|
| 292 |
+
txt_message,
|
| 293 |
+
chat_bot,
|
| 294 |
+
app_session,
|
| 295 |
+
params_form,
|
| 296 |
+
num_beams,
|
| 297 |
+
repetition_penalty,
|
| 298 |
+
repetition_penalty_2,
|
| 299 |
+
top_p,
|
| 300 |
+
top_k,
|
| 301 |
+
temperature
|
| 302 |
+
],
|
| 303 |
+
[txt_message, chat_bot, app_session]
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
txt_message.submit(
|
| 307 |
+
respond,
|
| 308 |
+
[
|
| 309 |
+
txt_message,
|
| 310 |
+
chat_bot,
|
| 311 |
+
app_session,
|
| 312 |
+
params_form,
|
| 313 |
+
num_beams,
|
| 314 |
+
repetition_penalty,
|
| 315 |
+
repetition_penalty_2,
|
| 316 |
+
top_p,
|
| 317 |
+
top_k,
|
| 318 |
+
temperature
|
| 319 |
+
],
|
| 320 |
+
[txt_message, chat_bot, app_session]
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
bt_pic.upload(
|
| 324 |
+
lambda: None,
|
| 325 |
+
None,
|
| 326 |
+
chat_bot,
|
| 327 |
+
queue=False
|
| 328 |
+
).then(
|
| 329 |
+
upload_img,
|
| 330 |
+
inputs=[bt_pic, chat_bot, app_session],
|
| 331 |
+
outputs=[chat_bot, app_session]
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# Launch the Gradio App with share=True for testing
|
| 335 |
+
demo.launch(share=True, debug=True)
|