import importlib
import math
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import imageio
import numpy as np
import PIL.Image
# import rembg
import torch
import torch.nn as nn
import torch.nn.functional as F
import trimesh
from omegaconf import DictConfig, OmegaConf
from PIL import Image


def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any:
    scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg)
    return scfg


def find_class(cls_string):
    module_string = ".".join(cls_string.split(".")[:-1])
    cls_name = cls_string.split(".")[-1]
    module = importlib.import_module(module_string, package=None)
    cls = getattr(module, cls_name)
    return cls


def get_intrinsic_from_fov(fov, H, W, bs=-1):
    focal_length = 0.5 * H / np.tan(0.5 * fov)
    intrinsic = np.identity(3, dtype=np.float32)
    intrinsic[0, 0] = focal_length
    intrinsic[1, 1] = focal_length
    intrinsic[0, 2] = W / 2.0
    intrinsic[1, 2] = H / 2.0

    if bs > 0:
        intrinsic = intrinsic[None].repeat(bs, axis=0)

    return torch.from_numpy(intrinsic)


class BaseModule(nn.Module):
    @dataclass
    class Config:
        pass

    cfg: Config  # add this to every subclass of BaseModule to enable static type checking

    def __init__(
        self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
    ) -> None:
        super().__init__()
        self.cfg = parse_structured(self.Config, cfg)
        self.configure(*args, **kwargs)

    def configure(self, *args, **kwargs) -> None:
        raise NotImplementedError


class ImagePreprocessor:
    def convert_and_resize(
        self,
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
        size: int,
    ):
        if isinstance(image, PIL.Image.Image):
            image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0)
        elif isinstance(image, np.ndarray):
            if image.dtype == np.uint8:
                image = torch.from_numpy(image.astype(np.float32) / 255.0)
            else:
                image = torch.from_numpy(image)
        elif isinstance(image, torch.Tensor):
            pass

        batched = image.ndim == 4

        if not batched:
            image = image[None, ...]
        image = F.interpolate(
            image.permute(0, 3, 1, 2),
            (size, size),
            mode="bilinear",
            align_corners=False,
            antialias=True,
        ).permute(0, 2, 3, 1)
        if not batched:
            image = image[0]
        return image

    def __call__(
        self,
        image: Union[
            PIL.Image.Image,
            np.ndarray,
            torch.FloatTensor,
            List[PIL.Image.Image],
            List[np.ndarray],
            List[torch.FloatTensor],
        ],
        size: int,
    ) -> Any:
        if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4:
            image = self.convert_and_resize(image, size)
        else:
            if not isinstance(image, list):
                image = [image]
            image = [self.convert_and_resize(im, size) for im in image]
            image = torch.stack(image, dim=0)
        return image


def rays_intersect_bbox(
    rays_o: torch.Tensor,
    rays_d: torch.Tensor,
    radius: float,
    near: float = 0.0,
    valid_thresh: float = 0.01,
):
    input_shape = rays_o.shape[:-1]
    rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3)
    rays_d_valid = torch.where(
        rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d
    )
    if type(radius) in [int, float]:
        radius = torch.FloatTensor(
            [[-radius, radius], [-radius, radius], [-radius, radius]]
        ).to(rays_o.device)
    radius = (
        1.0 - 1.0e-3
    ) * radius  # tighten the radius to make sure the intersection point lies in the bounding box
    interx0 = (radius[..., 1] - rays_o) / rays_d_valid
    interx1 = (radius[..., 0] - rays_o) / rays_d_valid
    t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near)
    t_far = torch.maximum(interx0, interx1).amin(dim=-1)

    # check wheter a ray intersects the bbox or not
    rays_valid = t_far - t_near > valid_thresh

    t_near[torch.where(~rays_valid)] = 0.0
    t_far[torch.where(~rays_valid)] = 0.0

    t_near = t_near.view(*input_shape, 1)
    t_far = t_far.view(*input_shape, 1)
    rays_valid = rays_valid.view(*input_shape)

    return t_near, t_far, rays_valid


def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any:
    if chunk_size <= 0:
        return func(*args, **kwargs)
    B = None
    for arg in list(args) + list(kwargs.values()):
        if isinstance(arg, torch.Tensor):
            B = arg.shape[0]
            break
    assert (
        B is not None
    ), "No tensor found in args or kwargs, cannot determine batch size."
    out = defaultdict(list)
    out_type = None
    # max(1, B) to support B == 0
    for i in range(0, max(1, B), chunk_size):
        out_chunk = func(
            *[
                arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                for arg in args
            ],
            **{
                k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                for k, arg in kwargs.items()
            },
        )
        if out_chunk is None:
            continue
        out_type = type(out_chunk)
        if isinstance(out_chunk, torch.Tensor):
            out_chunk = {0: out_chunk}
        elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
            chunk_length = len(out_chunk)
            out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
        elif isinstance(out_chunk, dict):
            pass
        else:
            print(
                f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
            )
            exit(1)
        for k, v in out_chunk.items():
            v = v if torch.is_grad_enabled() else v.detach()
            out[k].append(v)

    if out_type is None:
        return None

    out_merged: Dict[Any, Optional[torch.Tensor]] = {}
    for k, v in out.items():
        if all([vv is None for vv in v]):
            # allow None in return value
            out_merged[k] = None
        elif all([isinstance(vv, torch.Tensor) for vv in v]):
            out_merged[k] = torch.cat(v, dim=0)
        else:
            raise TypeError(
                f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
            )

    if out_type is torch.Tensor:
        return out_merged[0]
    elif out_type in [tuple, list]:
        return out_type([out_merged[i] for i in range(chunk_length)])
    elif out_type is dict:
        return out_merged


ValidScale = Union[Tuple[float, float], torch.FloatTensor]


def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale):
    if inp_scale is None:
        inp_scale = (0, 1)
    if tgt_scale is None:
        tgt_scale = (0, 1)
    if isinstance(tgt_scale, torch.FloatTensor):
        assert dat.shape[-1] == tgt_scale.shape[-1]
    dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
    dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
    return dat


def get_activation(name) -> Callable:
    if name is None:
        return lambda x: x
    name = name.lower()
    if name == "none":
        return lambda x: x
    elif name == "exp":
        return lambda x: torch.exp(x)
    elif name == "sigmoid":
        return lambda x: torch.sigmoid(x)
    elif name == "tanh":
        return lambda x: torch.tanh(x)
    elif name == "softplus":
        return lambda x: F.softplus(x)
    else:
        try:
            return getattr(F, name)
        except AttributeError:
            raise ValueError(f"Unknown activation function: {name}")


def get_ray_directions(
    H: int,
    W: int,
    focal: Union[float, Tuple[float, float]],
    principal: Optional[Tuple[float, float]] = None,
    use_pixel_centers: bool = True,
    normalize: bool = True,
) -> torch.FloatTensor:
    """
    Get ray directions for all pixels in camera coordinate.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems

    Inputs:
        H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
    Outputs:
        directions: (H, W, 3), the direction of the rays in camera coordinate
    """
    pixel_center = 0.5 if use_pixel_centers else 0

    if isinstance(focal, float):
        fx, fy = focal, focal
        cx, cy = W / 2, H / 2
    else:
        fx, fy = focal
        assert principal is not None
        cx, cy = principal

    i, j = torch.meshgrid(
        torch.arange(W, dtype=torch.float32) + pixel_center,
        torch.arange(H, dtype=torch.float32) + pixel_center,
        indexing="xy",
    )

    directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1)

    if normalize:
        directions = F.normalize(directions, dim=-1)

    return directions


def get_rays(
    directions,
    c2w,
    keepdim=False,
    normalize=False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
    # Rotate ray directions from camera coordinate to the world coordinate
    assert directions.shape[-1] == 3

    if directions.ndim == 2:  # (N_rays, 3)
        if c2w.ndim == 2:  # (4, 4)
            c2w = c2w[None, :, :]
        assert c2w.ndim == 3  # (N_rays, 4, 4) or (1, 4, 4)
        rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1)  # (N_rays, 3)
        rays_o = c2w[:, :3, 3].expand(rays_d.shape)
    elif directions.ndim == 3:  # (H, W, 3)
        assert c2w.ndim in [2, 3]
        if c2w.ndim == 2:  # (4, 4)
            rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
                -1
            )  # (H, W, 3)
            rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
        elif c2w.ndim == 3:  # (B, 4, 4)
            rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
                -1
            )  # (B, H, W, 3)
            rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
    elif directions.ndim == 4:  # (B, H, W, 3)
        assert c2w.ndim == 3  # (B, 4, 4)
        rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
            -1
        )  # (B, H, W, 3)
        rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)

    if normalize:
        rays_d = F.normalize(rays_d, dim=-1)
    if not keepdim:
        rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)

    return rays_o, rays_d


def get_spherical_cameras(
    n_views: int,
    elevation_deg: float,
    camera_distance: float,
    fovy_deg: float,
    height: int,
    width: int,
):
    azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views]
    elevation_deg = torch.full_like(azimuth_deg, elevation_deg)
    camera_distances = torch.full_like(elevation_deg, camera_distance)

    elevation = elevation_deg * math.pi / 180
    azimuth = azimuth_deg * math.pi / 180

    # convert spherical coordinates to cartesian coordinates
    # right hand coordinate system, x back, y right, z up
    # elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
    camera_positions = torch.stack(
        [
            camera_distances * torch.cos(elevation) * torch.cos(azimuth),
            camera_distances * torch.cos(elevation) * torch.sin(azimuth),
            camera_distances * torch.sin(elevation),
        ],
        dim=-1,
    )

    # default scene center at origin
    center = torch.zeros_like(camera_positions)
    # default camera up direction as +z
    up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1)

    fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180

    lookat = F.normalize(center - camera_positions, dim=-1)
    right = F.normalize(torch.cross(lookat, up), dim=-1)
    up = F.normalize(torch.cross(right, lookat), dim=-1)
    c2w3x4 = torch.cat(
        [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
        dim=-1,
    )
    c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1)
    c2w[:, 3, 3] = 1.0

    # get directions by dividing directions_unit_focal by focal length
    focal_length = 0.5 * height / torch.tan(0.5 * fovy)
    directions_unit_focal = get_ray_directions(
        H=height,
        W=width,
        focal=1.0,
    )
    directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1)
    directions[:, :, :, :2] = (
        directions[:, :, :, :2] / focal_length[:, None, None, None]
    )
    # must use normalize=True to normalize directions here
    rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True)

    return rays_o, rays_d


def remove_background(
    image: PIL.Image.Image,
    rembg_session: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image


def resize_foreground(
    image: PIL.Image.Image,
    ratio: float,
) -> PIL.Image.Image:
    image = np.array(image)
    assert image.shape[-1] == 4
    alpha = np.where(image[..., 3] > 0)
    y1, y2, x1, x2 = (
        alpha[0].min(),
        alpha[0].max(),
        alpha[1].min(),
        alpha[1].max(),
    )
    # crop the foreground
    fg = image[y1:y2, x1:x2]
    # pad to square
    size = max(fg.shape[0], fg.shape[1])
    ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
    ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
    new_image = np.pad(
        fg,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )

    # compute padding according to the ratio
    new_size = int(new_image.shape[0] / ratio)
    # pad to size, double side
    ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
    ph1, pw1 = new_size - size - ph0, new_size - size - pw0
    new_image = np.pad(
        new_image,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )
    new_image = PIL.Image.fromarray(new_image)
    return new_image


def save_video(
    frames: List[PIL.Image.Image],
    output_path: str,
    fps: int = 30,
):
    # use imageio to save video
    frames = [np.array(frame) for frame in frames]
    writer = imageio.get_writer(output_path, fps=fps)
    for frame in frames:
        writer.append_data(frame)
    writer.close()


def to_gradio_3d_orientation(mesh):
    mesh.apply_transform(trimesh.transformations.rotation_matrix(-np.pi/2, [1, 0, 0]))
    mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi/2, [0, 1, 0]))
    return mesh