Spaces:
Runtime error
Runtime error
Alejadro Sanchez-Giraldo
commited on
Commit
·
c585826
1
Parent(s):
8b6f519
add deepSeek code completions
Browse files
app.py
CHANGED
@@ -1,6 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
from fpl_client import FPLClient
|
3 |
from nlp_utils import process_query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Theme builder
|
6 |
# gr.themes.builder()
|
@@ -19,8 +28,14 @@ def chatbot_response(query):
|
|
19 |
# if response if a JSON boject iterate over the elements and conver is a list like "a": "b" "/n" "c": "d"
|
20 |
if isinstance(response, dict):
|
21 |
response = "\n".join([f"{key}: {value}" for key, value in response.items()])
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Set up the Gradio interface
|
26 |
iface = gr.Interface(
|
@@ -30,5 +45,6 @@ iface = gr.Interface(
|
|
30 |
theme=theme,
|
31 |
title="FPL Chatbot"
|
32 |
)
|
|
|
33 |
if __name__ == "__main__":
|
34 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from fpl_client import FPLClient
|
3 |
from nlp_utils import process_query
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
9 |
+
|
10 |
+
# Use CPU if CUDA is not available
|
11 |
+
device = torch.device("cpu")
|
12 |
+
model = model.to(device)
|
13 |
|
14 |
# Theme builder
|
15 |
# gr.themes.builder()
|
|
|
28 |
# if response if a JSON boject iterate over the elements and conver is a list like "a": "b" "/n" "c": "d"
|
29 |
if isinstance(response, dict):
|
30 |
response = "\n".join([f"{key}: {value}" for key, value in response.items()])
|
31 |
+
|
32 |
+
# Generate response using the model
|
33 |
+
messages = [{'role': 'user', 'content': query}]
|
34 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
35 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
36 |
+
model_response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
37 |
+
|
38 |
+
return response + "\n\n" + model_response
|
39 |
|
40 |
# Set up the Gradio interface
|
41 |
iface = gr.Interface(
|
|
|
45 |
theme=theme,
|
46 |
title="FPL Chatbot"
|
47 |
)
|
48 |
+
|
49 |
if __name__ == "__main__":
|
50 |
+
iface.launch()
|
dice.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
def roll_dice():
|
4 |
+
return random.randint(1, 6)
|
5 |
+
|
6 |
+
def main():
|
7 |
+
print("Welcome to the dice roller!")
|
8 |
+
while True:
|
9 |
+
print("Enter 'q' to quit.")
|
10 |
+
user_input = input("Roll the dice? ")
|
11 |
+
if user_input.lower() == 'q':
|
12 |
+
break
|
13 |
+
else:
|
14 |
+
try:
|
15 |
+
result = roll_dice()
|
16 |
+
print(f"You rolled a {result}!")
|
17 |
+
except ValueError:
|
18 |
+
print("Invalid input, please enter a number.")
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
main()
|