Spaces:
Sleeping
Sleeping
File size: 16,035 Bytes
16d9395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import streamlit as st
from ultralytics import YOLO
import tensorflow as tf # Change this to import TensorFlow
import numpy as np
from PIL import Image, ImageOps, ImageDraw, ImageFont
import pandas as pd
import time
from paddleocr import PaddleOCR, draw_ocr
import re
import dateparser
import os
import matplotlib.pyplot as plt
# Initialize PaddleOCR model
ocr = PaddleOCR(use_angle_cls=True, lang='en')
# Define the class names based on your dataset
class_names = [
'fresh_apple', 'fresh_banana', 'fresh_bitter_gourd', 'fresh_capsicum',
'fresh_orange', 'fresh_tomato', 'stale_apple', 'stale_banana',
'stale_bitter_gourd', 'stale_capsicum', 'stale_orange', 'stale_tomato'
]
# Team details
team_members = [
{"name": "Aman Deep", "image": "aman.jpg"}, # Replace with actual paths to images
{"name": "Abhishek Kumar Choudhary", "image": "myimage.jpg"},
{"name": "Gaurav Lodhi", "image": "gaurav.jpg"},
{"name": "Anand Jha", "image": "anandimg.jpg"}
]
# Function to preprocess the images for the model
from PIL import Image
import numpy as np
def preprocess_image(image):
"""
Preprocess the input image for model prediction.
Args:
image (PIL.Image): Input image in PIL format.
Returns:
np.ndarray: Preprocessed image array ready for prediction.
"""
try:
# Resize image to match model input size
img = image.resize((128, 128), Image.LANCZOS) # Using LANCZOS filter for high-quality resizing
# Convert image to NumPy array
img_array = np.array(img)
# Check if the image is grayscale and convert to RGB if needed
if img_array.ndim == 2: # Grayscale image
img_array = np.stack([img_array] * 3, axis=-1) # Convert to 3-channel RGB
elif img_array.shape[2] == 1: # Single-channel image
img_array = np.concatenate([img_array, img_array, img_array], axis=-1) # Convert to RGB
# Normalize pixel values to [0, 1] range
img_array = img_array / 255.0
# Add batch dimension
img_array = np.expand_dims(img_array, axis=0) # Shape: (1, 128, 128, 3)
return img_array
except Exception as e:
print(f"Error processing image: {e}")
return None # Return None if there's an error
# Function to create a high-quality circular mask for an image
def make_image_circular1(img, size=(256, 256)):
img = img.resize(size, Image.LANCZOS)
mask = Image.new("L", size, 0)
draw = ImageDraw.Draw(mask)
draw.ellipse((0, 0) + size, fill=255)
output = ImageOps.fit(img, mask.size, centering=(0.5, 0.5))
output.putalpha(mask) # Apply the mask as transparency
return output
# Function to check if a file exists
def file_exists(file_path):
return os.path.isfile(file_path)
def make_image_circular(image):
# Create a circular mask
mask = Image.new("L", image.size, 0)
draw = ImageDraw.Draw(mask)
draw.ellipse((0, 0, image.size[0], image.size[1]), fill=255)
# Apply the mask to the image
circular_image = Image.new("RGB", image.size)
circular_image.paste(image.convert("RGBA"), (0, 0), mask)
return circular_image
# Function to extract dates from recognized text using regex
def extract_dates_with_dateparser(texts, result):
date_texts = []
date_boxes = []
date_scores = []
def is_potential_date(text):
valid_date_pattern = r'^(0[1-9]|[12][0-9]|3[01])[-/.]?(0[1-9]|1[0-2])[-/.]?(\d{2}|\d{4})$|' \
r'^(0[1-9]|[12][0-9]|3[01])[-/.]?[A-Za-z]{3}[-/.]?(\d{2}|\d{4})$|' \
r'^(0[1-9]|1[0-2])[-/.]?(\d{2}|\d{4})$|' \
r'^[A-Za-z]{3}[-/.]?(\d{2}|\d{4})$'
return bool(re.match(valid_date_pattern, text))
dates_found = []
for i, text in enumerate(texts):
if is_potential_date(text): # Only process texts that are potential dates
parsed_date = dateparser.parse(text, settings={'DATE_ORDER': 'DMY'})
if parsed_date:
dates_found.append(parsed_date.strftime('%Y-%m-%d')) # Store as 'YYYY-MM-DD'
date_texts.append(text) # Store the original text
date_boxes.append(result[0][i][0]) # Store the bounding box
date_scores.append(result[0][i][1][1]) # Store confidence score
return dates_found, date_texts, date_boxes, date_scores
# Function to display circular images in a matrix format
def display_images_in_grid(images, max_images_per_row=4):
num_images = len(images)
num_rows = (num_images + max_images_per_row - 1) // max_images_per_row # Calculate number of rows
for i in range(num_rows):
cols = st.columns(min(max_images_per_row, num_images - i * max_images_per_row))
for j, img in enumerate(images[i * max_images_per_row:(i + 1) * max_images_per_row]):
with cols[j]:
st.image(img, use_column_width=True)
# Function to display team members in circular format
def display_team_members(members, max_members_per_row=4):
num_members = len(members)
num_rows = (num_members + max_members_per_row - 1) // max_members_per_row # Calculate number of rows
for i in range(num_rows):
cols = st.columns(min(max_members_per_row, num_members - i * max_members_per_row))
for j, member in enumerate(members[i * max_members_per_row:(i + 1) * max_members_per_row]):
with cols[j]:
img = Image.open(member["image"]) # Load the image
circular_img = make_image_circular(img) # Convert to circular format
st.image(circular_img, use_column_width=True) # Display the circular image
st.write(member["name"]) # Display the name below the image
# Title and description
st.title("Flipkart GRID 6.0")
# Team Details with links
st.sidebar.title("Flipkart Grid 6.0")
st.sidebar.write("DELHI TECHNOLOGICAL UNIVERSITY")
# Navbar with task tabs
st.sidebar.title("Navigation")
st.sidebar.write("Team Name: aman.dp121")
app_mode = st.sidebar.selectbox("Choose the task", ["Welcome","Project Details", "Task 1", "Task 2", "Task 3", "Task 4", "Team Details"])
if app_mode == "Welcome":
# Navigation Menu
st.write("# Welcome to Flipkart GrID 6.0! 🎉")
# Example for adding a local video
# video_file = open('Finalist.mp4', 'rb') # Replace with the path to your video file
# video_bytes = video_file.read()
# Embed the video using st.video()
st.video(video_bytes)
# Add a welcome image
welcome_image = Image.open("grid_banner.jpg") # Replace with the path to your welcome image
st.image(welcome_image, use_column_width=True) # Display the welcome image
elif app_mode=="Project Details":
st.markdown("""
## Navigation
- [Project Overview](#project-overview)
- [Proposal Round](#proposal-round)
- [Problem Statement](#problem-statement)
- [Proposed Solution](#proposed-solution)
""")
# Project Overview
st.write("## Project Overview:")
st.write("""
1. **OCR to Extract Details** (20%):
- Use OCR to read brand details, pack size, brand name, etc.
- Train the model to read details from various products, including FMCG, OTC items, health supplements, personal care, and household items.
2. **Using OCR for Expiry Date Details** (10%):
- Validate expiry dates using OCR to read expiry and MRP details printed on items.
3. **Image Recognition for Brand Recognition and Counting** (30%):
- Use machine learning to recognize brands and count product quantities from images.
4. **Detecting Freshness of Fresh Produce** (40%):
- Assess the freshness of fruits and vegetables by analyzing various visual cues and patterns.
""")
st.write("""
Our project aims to leverage OCR and image recognition to enhance product packaging analysis and freshness detection.
""")
# Proposal Round
st.write("## Proposal Round:")
st.write("""
**Format:** Use Case Submission & Code Review
- Selected teams will submit detailed use case scenarios they plan to solve.
- The submission should include a proposal outlining their approach and the code developed so far.
- The GRID team will provide a set of images for testing the model.
- Since this is an elimination stage, participants are encouraged to submit a video simulation of their solution on the image set provided to them, ensuring they can clearly articulate what they have solved.
- Teams working on detecting the freshness of produce may choose any fresh fruit/vegetable/bread, etc., and submit the freshness index based on the model.
- The video will help demonstrate the effectiveness of their approach and provide a visual representation of their solution.
Teams with the most comprehensive and innovative proposals will proceed to the final stage.
""")
# Problem Statement
st.write("## Problem Statement:")
st.write("""
In today’s fast-paced retail environment, ensuring product quality and freshness is crucial for customer satisfaction. The Flipkart GrID 6.0 Challenge aims to address this issue by leveraging technology to enhance product packaging analysis and freshness detection.
Traditional methods of checking freshness often involve manual inspection, which can be time-consuming and prone to human error. Furthermore, with the increasing variety of products available, a more automated and reliable solution is needed to streamline this process.
Our project focuses on developing an advanced system that utilizes Optical Character Recognition (OCR) and image recognition techniques to automate the extraction of product details from packaging. This will not only improve accuracy but also increase efficiency in assessing product freshness.
""")
# Proposed Solution
st.write("## Proposed Solution:")
st.write("""
Our solution is designed to tackle the problem by implementing the following key components:
### 1. OCR for Product Detail Extraction
We will use OCR technology to accurately extract critical information from product packaging, including:
- Brand name
- Pack size
- Expiry date
- MRP details
This will allow for real-time analysis of product information, ensuring that customers receive accurate data about their purchases.
### 2. Freshness Detection using Image Recognition
In conjunction with OCR, our model will utilize image recognition to assess the freshness of fruits, vegetables, and other perishable items. The model will be trained to classify products based on their appearance, detecting signs of spoilage and degradation.
### 3. Data Validation and Reporting
Our system will not only extract data but also validate expiry dates against the current date to ensure product safety. The results will be compiled into a user-friendly report that can be easily interpreted by retail staff.
### 4. Video Simulation
To effectively demonstrate our solution, we will create a video simulation showcasing the functionality of our system. This will include real-time examples of how our model processes images and extracts relevant information.
### 5. Proposal Submission
As part of the proposal round, we will provide a comprehensive submission outlining our approach, methodology, and the code developed thus far. This submission will highlight the effectiveness of our solution and our readiness to proceed to the final stage of the challenge.
Our team is committed to delivering a robust solution that not only meets but exceeds the expectations of the Flipkart GrID 6.0 Challenge.
""")
elif app_mode == "Team Details":
st.write("## Meet Our Team:")
display_team_members(team_members)
st.write("Delhi Technological University")
elif app_mode == "Task 1":
st.write("## Task 1: 🖼️ OCR to Extract Details 📄")
st.write("Using OCR to extract details from product packaging material, including brand name and pack size.")
# File uploader for images (supports multiple files)
uploaded_files = st.file_uploader("Upload images of products", type=["jpeg", "png", "jpg"], accept_multiple_files=True)
if uploaded_files:
st.write("### Uploaded Images in Circular Format:")
circular_images = []
for uploaded_file in uploaded_files:
img = Image.open(uploaded_file)
circular_img = make_image_circular(img) # Create circular images
circular_images.append(circular_img)
# Display the circular images in a matrix/grid format
display_images_in_grid(circular_images, max_images_per_row=4)
# Function to simulate loading process with a progress bar
def simulate_progress():
progress_bar = st.progress(0)
for percent_complete in range(100):
time.sleep(0.02)
progress_bar.progress(percent_complete + 1)
# Function to remove gibberish using regex (removes non-alphanumeric chars, filters out very short text)
def clean_text(text):
# Keep text with letters, digits, and spaces, and remove short/irrelevant text
return re.sub(r'[^a-zA-Z0-9\s]', '', text).strip()
# Function to extract the most prominent text (product name) and other details
def extract_product_info(results):
product_name = ""
product_details = ""
largest_text_size = 0
for line in results:
for box in line:
text, confidence = box[1][0], box[1][1]
text_size = box[0][2][1] - box[0][0][1] # Calculate height of the text box
# Clean the text to avoid gibberish
clean_text_line = clean_text(text)
if confidence > 0.7 and len(clean_text_line) > 2: # Only consider confident, meaningful text
if text_size > largest_text_size: # Assume the largest text is the product name
largest_text_size = text_size
product_name = clean_text_line
else:
product_details += clean_text_line + " "
return product_name, product_details.strip()
if st.button("Start Analysis"):
simulate_progress()
# Loop through each uploaded image and process them
for uploaded_image in uploaded_files:
# Load the uploaded image
image = Image.open(uploaded_image)
# st.image(image, caption=f'Uploaded Image: {uploaded_image.name}', use_column_width=True)
# Convert image to numpy array for OCR processing
img_array = np.array(image)
# Perform OCR on the image
st.write(f"Extracting details from {uploaded_image.name}...")
result = ocr.ocr(img_array, cls=True)
# Process the OCR result to extract product name and properties
product_name, product_details = extract_product_info(result)
# UI display for single image product details
st.markdown("---")
st.markdown(f"### **Product Name:** `{product_name}`")
st.write(f"**Product Properties:** {product_details}")
st.markdown("---")
else:
st.write("Please upload images to extract product details.")
# Footer with animation
st.markdown("""
<style>
@keyframes fade-in {
from { opacity: 0; }
to { opacity: 1;}
}
.footer {
text-align: center;
font-size: 1.1em;
animation: fade-in 2s;
padding-top: 2rem;
}
</style>
<div class="footer">
<p>© 2024 Flipkart GRiD 6.0 Challenge. All rights reserved.</p>
</div>
""", unsafe_allow_html=True) |