Spaces:
Runtime error
Runtime error
File size: 14,494 Bytes
84f6785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
from typing import Dict, List, Optional, Any, Union
import re
import json
import os
import glob
import time
import logging
import socket
import requests
import httpx
import backoff
from datetime import datetime
from tenacity import retry, wait_exponential, stop_after_attempt
from openai import OpenAI
# Configure model settings
MODEL_NAME = "meta-llama/llama-3.2-90b-vision-instruct"
temperature = 0.2
# Configure logging
log_filename = f"api_usage_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
logging.basicConfig(filename=log_filename, level=logging.INFO, format="%(message)s")
def verify_dns() -> bool:
"""Verify DNS resolution and connectivity.
Returns:
bool: True if DNS resolution succeeds, False otherwise
"""
try:
# Try to resolve openrouter.ai
socket.gethostbyname("openrouter.ai")
return True
except socket.gaierror:
print("DNS resolution failed. Trying to use Google DNS (8.8.8.8)...")
# Modify resolv.conf to use Google DNS
try:
with open("/etc/resolv.conf", "w") as f:
f.write("nameserver 8.8.8.8\n")
return True
except Exception as e:
print(f"Failed to update DNS settings: {e}")
return False
def verify_connection() -> bool:
"""Verify connection to OpenRouter API.
Returns:
bool: True if connection succeeds, False otherwise
"""
try:
response = requests.get("https://openrouter.ai/api/v1/status", timeout=10)
return response.status_code == 200
except Exception as e:
print(f"Connection test failed: {e}")
return False
def initialize_client() -> OpenAI:
"""Initialize the OpenRouter client with proper timeout settings and connection verification.
Returns:
OpenAI: Configured OpenAI client for OpenRouter
Raises:
ValueError: If OPENROUTER_API_KEY environment variable is not set
ConnectionError: If DNS verification or connection test fails
"""
api_key = os.getenv("OPENROUTER_API_KEY")
if not api_key:
raise ValueError("OPENROUTER_API_KEY environment variable is not set.")
# Configure timeout settings for the client
timeout_settings = 120 # Increased timeout for large images/responses
# Verify DNS and connection
if not verify_dns():
raise ConnectionError("DNS verification failed. Please check your network settings.")
if not verify_connection():
raise ConnectionError(
"Cannot connect to OpenRouter. Please check your internet connection."
)
# Set up client with retry and timeout settings
return OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
timeout=timeout_settings,
http_client=httpx.Client(
timeout=timeout_settings, transport=httpx.HTTPTransport(retries=3)
),
)
@backoff.on_exception(
backoff.expo,
(ConnectionError, TimeoutError, socket.gaierror, httpx.ConnectError),
max_tries=5,
max_time=300, # Maximum total time to try in seconds
)
def create_multimodal_request(
question_data: Dict[str, Any],
case_details: Dict[str, Any],
case_id: str,
question_id: str,
client: OpenAI,
) -> Optional[Any]:
"""Create and send a multimodal request to the model.
Args:
question_data: Dictionary containing question details
case_details: Dictionary containing case information
case_id: ID of the medical case
question_id: ID of the specific question
client: OpenAI client instance
Returns:
Optional[Any]: Model response if successful, None if skipped
Raises:
ConnectionError: If connection fails
TimeoutError: If request times out
Exception: For other errors
"""
system_prompt = """You are a medical imaging expert. Your task is to provide ONLY a single letter answer.
Rules:
1. Respond with exactly one uppercase letter (A/B/C/D/E/F)
2. Do not add periods, explanations, or any other text
3. Do not use markdown or formatting
4. Do not restate the question
5. Do not explain your reasoning
Examples of valid responses:
A
B
C
Examples of invalid responses:
"A."
"Answer: B"
"C) This shows..."
"The answer is D"
"""
prompt = f"""Given the following medical case:
Please answer this multiple choice question:
{question_data['question']}
Base your answer only on the provided images and case information."""
# Parse required figures
try:
if isinstance(question_data["figures"], str):
try:
required_figures = json.loads(question_data["figures"])
except json.JSONDecodeError:
required_figures = [question_data["figures"]]
elif isinstance(question_data["figures"], list):
required_figures = question_data["figures"]
else:
required_figures = [str(question_data["figures"])]
except Exception as e:
print(f"Error parsing figures: {e}")
required_figures = []
required_figures = [
fig if fig.startswith("Figure ") else f"Figure {fig}" for fig in required_figures
]
# Process subfigures and prepare content
content = [{"type": "text", "text": prompt}]
image_urls = []
image_captions = []
for figure in required_figures:
base_figure_num = "".join(filter(str.isdigit, figure))
figure_letter = "".join(filter(str.isalpha, figure.split()[-1])) or None
matching_figures = [
case_figure
for case_figure in case_details.get("figures", [])
if case_figure["number"] == f"Figure {base_figure_num}"
]
for case_figure in matching_figures:
subfigures = []
if figure_letter:
subfigures = [
subfig
for subfig in case_figure.get("subfigures", [])
if subfig.get("number", "").lower().endswith(figure_letter.lower())
or subfig.get("label", "").lower() == figure_letter.lower()
]
else:
subfigures = case_figure.get("subfigures", [])
for subfig in subfigures:
if "url" in subfig:
content.append({"type": "image_url", "image_url": {"url": subfig["url"]}})
image_urls.append(subfig["url"])
image_captions.append(subfig.get("caption", ""))
if len(content) == 1: # Only the text prompt exists
print(f"No images found for case {case_id}, question {question_id}")
# Log the skipped question
log_entry = {
"case_id": case_id,
"question_id": question_id,
"timestamp": datetime.now().isoformat(),
"model": MODEL_NAME,
"status": "skipped",
"reason": "no_images",
"input": {
"question_data": {
"question": question_data["question"],
"explanation": question_data["explanation"],
"metadata": question_data.get("metadata", {}),
"figures": question_data["figures"],
},
"image_urls": image_urls,
},
}
logging.info(json.dumps(log_entry))
return None
try:
start_time = time.time()
response = client.chat.completions.create(
model=MODEL_NAME,
temperature=temperature,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": content},
],
)
duration = time.time() - start_time
# Get raw response
raw_answer = response.choices[0].message.content
# Validate and clean
clean_answer = validate_answer(raw_answer)
if not clean_answer:
print(f"Warning: Invalid response format for case {case_id}, question {question_id}")
print(f"Raw response: {raw_answer}")
# Update response object with cleaned answer
response.choices[0].message.content = clean_answer
# Log response
log_entry = {
"case_id": case_id,
"question_id": question_id,
"timestamp": datetime.now().isoformat(),
"model": MODEL_NAME,
"temperature": temperature,
"duration": round(duration, 2),
"usage": {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens,
},
"model_answer": response.choices[0].message.content,
"correct_answer": question_data["answer"],
"input": {
"question_data": {
"question": question_data["question"],
"explanation": question_data["explanation"],
"metadata": question_data.get("metadata", {}),
"figures": question_data["figures"],
},
"image_urls": image_urls,
},
}
logging.info(json.dumps(log_entry))
return response
except ConnectionError as e:
print(f"Connection error for case {case_id}, question {question_id}: {str(e)}")
print("Retrying after a longer delay...")
time.sleep(30) # Add a longer delay before retry
raise
except TimeoutError as e:
print(f"Timeout error for case {case_id}, question {question_id}: {str(e)}")
print("Retrying with increased timeout...")
raise
except Exception as e:
# Log failed requests too
log_entry = {
"case_id": case_id,
"question_id": question_id,
"timestamp": datetime.now().isoformat(),
"model": MODEL_NAME,
"temperature": temperature,
"status": "error",
"error": str(e),
"input": {
"question_data": {
"question": question_data["question"],
"explanation": question_data["explanation"],
"metadata": question_data.get("metadata", {}),
"figures": question_data["figures"],
},
"image_urls": image_urls,
},
}
logging.info(json.dumps(log_entry))
raise
def extract_answer(response_text: str) -> Optional[str]:
"""Extract single letter answer from model response.
Args:
response_text: Raw text response from model
Returns:
Optional[str]: Single letter answer if found, None otherwise
"""
# Convert to uppercase and remove periods
text = response_text.upper().replace(".", "")
# Look for common patterns
patterns = [
r"ANSWER:\s*([A-F])", # Matches "ANSWER: X"
r"OPTION\s*([A-F])", # Matches "OPTION X"
r"([A-F])\)", # Matches "X)"
r"\b([A-F])\b", # Matches single letter
]
for pattern in patterns:
matches = re.findall(pattern, text)
if matches:
return matches[0]
return None
def validate_answer(response_text: str) -> Optional[str]:
"""Enforce strict single-letter response format.
Args:
response_text: Raw text response from model
Returns:
Optional[str]: Valid single letter answer if found, None otherwise
"""
if not response_text:
return None
# Remove all whitespace and convert to uppercase
cleaned = response_text.strip().upper()
# Check if it's exactly one valid letter
if len(cleaned) == 1 and cleaned in "ABCDEF":
return cleaned
# If not, try to extract just the letter
match = re.search(r"([A-F])", cleaned)
return match.group(1) if match else None
def load_benchmark_questions(case_id: str) -> List[str]:
"""Find all question files for a given case ID.
Args:
case_id: ID of the medical case
Returns:
List[str]: List of paths to question files
"""
benchmark_dir = "../benchmark/questions"
return glob.glob(f"{benchmark_dir}/{case_id}/{case_id}_*.json")
def count_total_questions() -> Tuple[int, int]:
"""Count total number of cases and questions.
Returns:
Tuple[int, int]: (total_cases, total_questions)
"""
total_cases = len(glob.glob("../benchmark/questions/*"))
total_questions = sum(
len(glob.glob(f"../benchmark/questions/{case_id}/*.json"))
for case_id in os.listdir("../benchmark/questions")
)
return total_cases, total_questions
def main():
with open("../data/eurorad_metadata.json", "r") as file:
data = json.load(file)
client = initialize_client()
total_cases, total_questions = count_total_questions()
cases_processed = 0
questions_processed = 0
skipped_questions = 0
print(f"Beginning benchmark evaluation for {MODEL_NAME} with temperature {temperature}")
for case_id, case_details in data.items():
question_files = load_benchmark_questions(case_id)
if not question_files:
continue
cases_processed += 1
for question_file in question_files:
with open(question_file, "r") as file:
question_data = json.load(file)
question_id = os.path.basename(question_file).split(".")[0]
questions_processed += 1
response = create_multimodal_request(
question_data, case_details, case_id, question_id, client
)
if response is None:
skipped_questions += 1
print(f"Skipped question: Case ID {case_id}, Question ID {question_id}")
continue
print(
f"Progress: Case {cases_processed}/{total_cases}, Question {questions_processed}/{total_questions}"
)
print(f"Case ID: {case_id}")
print(f"Question ID: {question_id}")
print(f"Model Answer: {response.choices[0].message.content}")
print(f"Correct Answer: {question_data['answer']}\n")
print(f"\nBenchmark Summary:")
print(f"Total Cases Processed: {cases_processed}")
print(f"Total Questions Processed: {questions_processed}")
print(f"Total Questions Skipped: {skipped_questions}")
if __name__ == "__main__":
main()
|