File size: 12,526 Bytes
84f6785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import json
import openai
import os
import glob
import time
import logging
from datetime import datetime
from tenacity import retry, wait_exponential, stop_after_attempt

model_name = "chatgpt-4o-latest"
temperature = 0.2
log_filename = f"api_usage_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
logging.basicConfig(filename=log_filename, level=logging.INFO, format="%(message)s")


def calculate_cost(
    prompt_tokens: int, completion_tokens: int, model: str = "chatgpt-4o-latest"
) -> float:
    """Calculate the cost of API usage based on token counts.

    Args:
        prompt_tokens: Number of tokens in the prompt
        completion_tokens: Number of tokens in the completion
        model: Model name to use for pricing, defaults to chatgpt-4o-latest

    Returns:
        float: Cost in USD
    """
    pricing = {"chatgpt-4o-latest": {"prompt": 5.0, "completion": 15.0}}
    rates = pricing.get(model, {"prompt": 5.0, "completion": 15.0})
    return (prompt_tokens * rates["prompt"] + completion_tokens * rates["completion"]) / 1000000


@retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3))
def create_multimodal_request(
    question_data: dict, case_details: dict, case_id: str, question_id: str, client: openai.OpenAI
) -> openai.types.chat.ChatCompletion:
    """Create and send a multimodal request to the OpenAI API.

    Args:
        question_data: Dictionary containing question details and figures
        case_details: Dictionary containing case information and figures
        case_id: Identifier for the medical case
        question_id: Identifier for the specific question
        client: OpenAI client instance

    Returns:
        openai.types.chat.ChatCompletion: API response object, or None if request fails
    """
    prompt = f"""Given the following medical case:
Please answer this multiple choice question:
{question_data['question']}
Base your answer only on the provided images and case information."""

    content = [{"type": "text", "text": prompt}]

    # Parse required figures
    try:
        # Try multiple ways of parsing figures
        if isinstance(question_data["figures"], str):
            try:
                required_figures = json.loads(question_data["figures"])
            except json.JSONDecodeError:
                required_figures = [question_data["figures"]]
        elif isinstance(question_data["figures"], list):
            required_figures = question_data["figures"]
        else:
            required_figures = [str(question_data["figures"])]
    except Exception as e:
        print(f"Error parsing figures: {e}")
        required_figures = []

    # Ensure each figure starts with "Figure "
    required_figures = [
        fig if fig.startswith("Figure ") else f"Figure {fig}" for fig in required_figures
    ]

    subfigures = []
    for figure in required_figures:
        # Handle both regular figures and those with letter suffixes
        base_figure_num = "".join(filter(str.isdigit, figure))
        figure_letter = "".join(filter(str.isalpha, figure.split()[-1])) or None

        # Find matching figures in case details
        matching_figures = [
            case_figure
            for case_figure in case_details.get("figures", [])
            if case_figure["number"] == f"Figure {base_figure_num}"
        ]

        if not matching_figures:
            print(f"No matching figure found for {figure} in case {case_id}")
            continue

        for case_figure in matching_figures:
            # If a specific letter is specified, filter subfigures
            if figure_letter:
                matching_subfigures = [
                    subfig
                    for subfig in case_figure.get("subfigures", [])
                    if subfig.get("number", "").lower().endswith(figure_letter.lower())
                    or subfig.get("label", "").lower() == figure_letter.lower()
                ]
                subfigures.extend(matching_subfigures)
            else:
                # If no letter specified, add all subfigures
                subfigures.extend(case_figure.get("subfigures", []))

    # Add images to content
    for subfig in subfigures:
        if "url" in subfig:
            content.append({"type": "image_url", "image_url": {"url": subfig["url"]}})
        else:
            print(f"Subfigure missing URL: {subfig}")

    # If no images found, log and return None
    if len(content) == 1:  # Only the text prompt exists
        print(f"No images found for case {case_id}, question {question_id}")
        return None

    messages = [
        {
            "role": "system",
            "content": "You are a medical imaging expert. Provide only the letter corresponding to your answer choice (A/B/C/D/E/F).",
        },
        {"role": "user", "content": content},
    ]

    if len(content) == 1:  # Only the text prompt exists
        print(f"No images found for case {case_id}, question {question_id}")
        log_entry = {
            "case_id": case_id,
            "question_id": question_id,
            "timestamp": datetime.now().isoformat(),
            "model": model_name,
            "temperature": temperature,
            "status": "skipped",
            "reason": "no_images",
            "cost": 0,
            "input": {
                "messages": messages,
                "question_data": {
                    "question": question_data["question"],
                    "explanation": question_data["explanation"],
                    "metadata": question_data.get("metadata", {}),
                    "figures": question_data["figures"],
                },
                "image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
                "image_captions": [subfig.get("caption", "") for subfig in subfigures],
            },
        }
        logging.info(json.dumps(log_entry))
        return None

    try:
        start_time = time.time()

        response = client.chat.completions.create(
            model=model_name, messages=messages, max_tokens=50, temperature=temperature
        )
        duration = time.time() - start_time

        log_entry = {
            "case_id": case_id,
            "question_id": question_id,
            "timestamp": datetime.now().isoformat(),
            "model": model_name,
            "temperature": temperature,
            "duration": round(duration, 2),
            "usage": {
                "prompt_tokens": response.usage.prompt_tokens,
                "completion_tokens": response.usage.completion_tokens,
                "total_tokens": response.usage.total_tokens,
            },
            "cost": calculate_cost(response.usage.prompt_tokens, response.usage.completion_tokens),
            "model_answer": response.choices[0].message.content,
            "correct_answer": question_data["answer"],
            "input": {
                "messages": messages,
                "question_data": {
                    "question": question_data["question"],
                    "explanation": question_data["explanation"],
                    "metadata": question_data.get("metadata", {}),
                    "figures": question_data["figures"],
                },
                "image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
                "image_captions": [subfig.get("caption", "") for subfig in subfigures],
            },
        }
        logging.info(json.dumps(log_entry))
        return response

    except openai.RateLimitError:
        log_entry = {
            "case_id": case_id,
            "question_id": question_id,
            "timestamp": datetime.now().isoformat(),
            "model": model_name,
            "temperature": temperature,
            "status": "error",
            "reason": "rate_limit",
            "cost": 0,
            "input": {
                "messages": messages,
                "question_data": {
                    "question": question_data["question"],
                    "explanation": question_data["explanation"],
                    "metadata": question_data.get("metadata", {}),
                    "figures": question_data["figures"],
                },
                "image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
                "image_captions": [subfig.get("caption", "") for subfig in subfigures],
            },
        }
        logging.info(json.dumps(log_entry))
        print(
            f"\nRate limit hit for case {case_id}, question {question_id}. Waiting 20s...",
            flush=True,
        )
        time.sleep(20)
        raise
    except Exception as e:
        log_entry = {
            "case_id": case_id,
            "question_id": question_id,
            "timestamp": datetime.now().isoformat(),
            "model": model_name,
            "temperature": temperature,
            "status": "error",
            "error": str(e),
            "cost": 0,
            "input": {
                "messages": messages,
                "question_data": {
                    "question": question_data["question"],
                    "explanation": question_data["explanation"],
                    "metadata": question_data.get("metadata", {}),
                    "figures": question_data["figures"],
                },
                "image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
                "image_captions": [subfig.get("caption", "") for subfig in subfigures],
            },
        }
        logging.info(json.dumps(log_entry))
        print(f"Error processing case {case_id}, question {question_id}: {str(e)}")
        raise


def load_benchmark_questions(case_id: str) -> list:
    """Load benchmark questions for a given case.

    Args:
        case_id: Identifier for the medical case

    Returns:
        list: List of paths to question files
    """
    benchmark_dir = "../benchmark/questions"
    return glob.glob(f"{benchmark_dir}/{case_id}/{case_id}_*.json")


def count_total_questions() -> tuple[int, int]:
    """Count total number of cases and questions in benchmark.

    Returns:
        tuple: (total_cases, total_questions)
    """
    total_cases = len(glob.glob("../benchmark/questions/*"))
    total_questions = sum(
        len(glob.glob(f"../benchmark/questions/{case_id}/*.json"))
        for case_id in os.listdir("../benchmark/questions")
    )
    return total_cases, total_questions


def main() -> None:
    """Main function to run the benchmark evaluation."""
    with open("../data/eurorad_metadata.json", "r") as file:
        data = json.load(file)

    api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        raise ValueError("OPENAI_API_KEY environment variable is not set.")
    global client
    client = openai.OpenAI(api_key=api_key)

    total_cases, total_questions = count_total_questions()
    cases_processed = 0
    questions_processed = 0
    skipped_questions = 0

    print(f"Beginning benchmark evaluation for model {model_name} with temperature {temperature}")

    for case_id, case_details in data.items():
        question_files = load_benchmark_questions(case_id)
        if not question_files:
            continue

        cases_processed += 1
        for question_file in question_files:
            with open(question_file, "r") as file:
                question_data = json.load(file)
                question_id = os.path.basename(question_file).split(".")[0]

            questions_processed += 1
            response = create_multimodal_request(
                question_data, case_details, case_id, question_id, client
            )

            # Handle cases where response is None
            if response is None:
                skipped_questions += 1
                print(f"Skipped question: Case ID {case_id}, Question ID {question_id}")
                continue

            print(
                f"Progress: Case {cases_processed}/{total_cases}, Question {questions_processed}/{total_questions}"
            )
            print(f"Case ID: {case_id}")
            print(f"Question ID: {question_id}")
            print(f"Model Answer: {response.choices[0].message.content}")
            print(f"Correct Answer: {question_data['answer']}\n")

    print(f"\nBenchmark Summary:")
    print(f"Total Cases Processed: {cases_processed}")
    print(f"Total Questions Processed: {questions_processed}")
    print(f"Total Questions Skipped: {skipped_questions}")


if __name__ == "__main__":
    main()