Spaces:
Runtime error
Runtime error
File size: 12,526 Bytes
84f6785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import json
import openai
import os
import glob
import time
import logging
from datetime import datetime
from tenacity import retry, wait_exponential, stop_after_attempt
model_name = "chatgpt-4o-latest"
temperature = 0.2
log_filename = f"api_usage_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
logging.basicConfig(filename=log_filename, level=logging.INFO, format="%(message)s")
def calculate_cost(
prompt_tokens: int, completion_tokens: int, model: str = "chatgpt-4o-latest"
) -> float:
"""Calculate the cost of API usage based on token counts.
Args:
prompt_tokens: Number of tokens in the prompt
completion_tokens: Number of tokens in the completion
model: Model name to use for pricing, defaults to chatgpt-4o-latest
Returns:
float: Cost in USD
"""
pricing = {"chatgpt-4o-latest": {"prompt": 5.0, "completion": 15.0}}
rates = pricing.get(model, {"prompt": 5.0, "completion": 15.0})
return (prompt_tokens * rates["prompt"] + completion_tokens * rates["completion"]) / 1000000
@retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(3))
def create_multimodal_request(
question_data: dict, case_details: dict, case_id: str, question_id: str, client: openai.OpenAI
) -> openai.types.chat.ChatCompletion:
"""Create and send a multimodal request to the OpenAI API.
Args:
question_data: Dictionary containing question details and figures
case_details: Dictionary containing case information and figures
case_id: Identifier for the medical case
question_id: Identifier for the specific question
client: OpenAI client instance
Returns:
openai.types.chat.ChatCompletion: API response object, or None if request fails
"""
prompt = f"""Given the following medical case:
Please answer this multiple choice question:
{question_data['question']}
Base your answer only on the provided images and case information."""
content = [{"type": "text", "text": prompt}]
# Parse required figures
try:
# Try multiple ways of parsing figures
if isinstance(question_data["figures"], str):
try:
required_figures = json.loads(question_data["figures"])
except json.JSONDecodeError:
required_figures = [question_data["figures"]]
elif isinstance(question_data["figures"], list):
required_figures = question_data["figures"]
else:
required_figures = [str(question_data["figures"])]
except Exception as e:
print(f"Error parsing figures: {e}")
required_figures = []
# Ensure each figure starts with "Figure "
required_figures = [
fig if fig.startswith("Figure ") else f"Figure {fig}" for fig in required_figures
]
subfigures = []
for figure in required_figures:
# Handle both regular figures and those with letter suffixes
base_figure_num = "".join(filter(str.isdigit, figure))
figure_letter = "".join(filter(str.isalpha, figure.split()[-1])) or None
# Find matching figures in case details
matching_figures = [
case_figure
for case_figure in case_details.get("figures", [])
if case_figure["number"] == f"Figure {base_figure_num}"
]
if not matching_figures:
print(f"No matching figure found for {figure} in case {case_id}")
continue
for case_figure in matching_figures:
# If a specific letter is specified, filter subfigures
if figure_letter:
matching_subfigures = [
subfig
for subfig in case_figure.get("subfigures", [])
if subfig.get("number", "").lower().endswith(figure_letter.lower())
or subfig.get("label", "").lower() == figure_letter.lower()
]
subfigures.extend(matching_subfigures)
else:
# If no letter specified, add all subfigures
subfigures.extend(case_figure.get("subfigures", []))
# Add images to content
for subfig in subfigures:
if "url" in subfig:
content.append({"type": "image_url", "image_url": {"url": subfig["url"]}})
else:
print(f"Subfigure missing URL: {subfig}")
# If no images found, log and return None
if len(content) == 1: # Only the text prompt exists
print(f"No images found for case {case_id}, question {question_id}")
return None
messages = [
{
"role": "system",
"content": "You are a medical imaging expert. Provide only the letter corresponding to your answer choice (A/B/C/D/E/F).",
},
{"role": "user", "content": content},
]
if len(content) == 1: # Only the text prompt exists
print(f"No images found for case {case_id}, question {question_id}")
log_entry = {
"case_id": case_id,
"question_id": question_id,
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"status": "skipped",
"reason": "no_images",
"cost": 0,
"input": {
"messages": messages,
"question_data": {
"question": question_data["question"],
"explanation": question_data["explanation"],
"metadata": question_data.get("metadata", {}),
"figures": question_data["figures"],
},
"image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
"image_captions": [subfig.get("caption", "") for subfig in subfigures],
},
}
logging.info(json.dumps(log_entry))
return None
try:
start_time = time.time()
response = client.chat.completions.create(
model=model_name, messages=messages, max_tokens=50, temperature=temperature
)
duration = time.time() - start_time
log_entry = {
"case_id": case_id,
"question_id": question_id,
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"duration": round(duration, 2),
"usage": {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens,
},
"cost": calculate_cost(response.usage.prompt_tokens, response.usage.completion_tokens),
"model_answer": response.choices[0].message.content,
"correct_answer": question_data["answer"],
"input": {
"messages": messages,
"question_data": {
"question": question_data["question"],
"explanation": question_data["explanation"],
"metadata": question_data.get("metadata", {}),
"figures": question_data["figures"],
},
"image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
"image_captions": [subfig.get("caption", "") for subfig in subfigures],
},
}
logging.info(json.dumps(log_entry))
return response
except openai.RateLimitError:
log_entry = {
"case_id": case_id,
"question_id": question_id,
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"status": "error",
"reason": "rate_limit",
"cost": 0,
"input": {
"messages": messages,
"question_data": {
"question": question_data["question"],
"explanation": question_data["explanation"],
"metadata": question_data.get("metadata", {}),
"figures": question_data["figures"],
},
"image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
"image_captions": [subfig.get("caption", "") for subfig in subfigures],
},
}
logging.info(json.dumps(log_entry))
print(
f"\nRate limit hit for case {case_id}, question {question_id}. Waiting 20s...",
flush=True,
)
time.sleep(20)
raise
except Exception as e:
log_entry = {
"case_id": case_id,
"question_id": question_id,
"timestamp": datetime.now().isoformat(),
"model": model_name,
"temperature": temperature,
"status": "error",
"error": str(e),
"cost": 0,
"input": {
"messages": messages,
"question_data": {
"question": question_data["question"],
"explanation": question_data["explanation"],
"metadata": question_data.get("metadata", {}),
"figures": question_data["figures"],
},
"image_urls": [subfig["url"] for subfig in subfigures if "url" in subfig],
"image_captions": [subfig.get("caption", "") for subfig in subfigures],
},
}
logging.info(json.dumps(log_entry))
print(f"Error processing case {case_id}, question {question_id}: {str(e)}")
raise
def load_benchmark_questions(case_id: str) -> list:
"""Load benchmark questions for a given case.
Args:
case_id: Identifier for the medical case
Returns:
list: List of paths to question files
"""
benchmark_dir = "../benchmark/questions"
return glob.glob(f"{benchmark_dir}/{case_id}/{case_id}_*.json")
def count_total_questions() -> tuple[int, int]:
"""Count total number of cases and questions in benchmark.
Returns:
tuple: (total_cases, total_questions)
"""
total_cases = len(glob.glob("../benchmark/questions/*"))
total_questions = sum(
len(glob.glob(f"../benchmark/questions/{case_id}/*.json"))
for case_id in os.listdir("../benchmark/questions")
)
return total_cases, total_questions
def main() -> None:
"""Main function to run the benchmark evaluation."""
with open("../data/eurorad_metadata.json", "r") as file:
data = json.load(file)
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
global client
client = openai.OpenAI(api_key=api_key)
total_cases, total_questions = count_total_questions()
cases_processed = 0
questions_processed = 0
skipped_questions = 0
print(f"Beginning benchmark evaluation for model {model_name} with temperature {temperature}")
for case_id, case_details in data.items():
question_files = load_benchmark_questions(case_id)
if not question_files:
continue
cases_processed += 1
for question_file in question_files:
with open(question_file, "r") as file:
question_data = json.load(file)
question_id = os.path.basename(question_file).split(".")[0]
questions_processed += 1
response = create_multimodal_request(
question_data, case_details, case_id, question_id, client
)
# Handle cases where response is None
if response is None:
skipped_questions += 1
print(f"Skipped question: Case ID {case_id}, Question ID {question_id}")
continue
print(
f"Progress: Case {cases_processed}/{total_cases}, Question {questions_processed}/{total_questions}"
)
print(f"Case ID: {case_id}")
print(f"Question ID: {question_id}")
print(f"Model Answer: {response.choices[0].message.content}")
print(f"Correct Answer: {question_data['answer']}\n")
print(f"\nBenchmark Summary:")
print(f"Total Cases Processed: {cases_processed}")
print(f"Total Questions Processed: {questions_processed}")
print(f"Total Questions Skipped: {skipped_questions}")
if __name__ == "__main__":
main()
|