File size: 13,133 Bytes
84f6785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
from typing import Dict, List, Optional, Tuple, Union, Any
import json
import os
import sys
import argparse
from collections import defaultdict
from tqdm import tqdm

QUESTION_TYPES = {
    "Detailed Finding Analysis": ["detection", "localization", "characterization"],
    "Pattern Recognition & Relations": ["detection", "classification", "relationship"],
    "Spatial Understanding": ["localization", "comparison", "relationship"],
    "Clinical Decision Making": ["classification", "comparison", "diagnosis"],
    "Diagnostic Classification": ["classification", "characterization", "diagnosis"],
}


def extract_answer_letter(answer: Optional[Union[str, Any]]) -> Optional[str]:
    """
    Extract just the letter from various answer formats.

    Args:
        answer: The answer text to extract letter from

    Returns:
        Optional[str]: The extracted letter in uppercase, or None if no letter found
    """
    if not answer:
        return None

    # Convert to string and clean
    answer = str(answer).strip()

    # If it's just a single letter, return it
    if len(answer) == 1 and answer.isalpha():
        return answer.upper()

    # Try to extract letter from format like "A)" or "A."
    if len(answer) >= 2 and answer[0].isalpha() and answer[1] in ").:- ":
        return answer[0].upper()

    # Try to extract letter from format like "A) Some text"
    if answer.startswith(("A)", "B)", "C)", "D)", "E)", "F)")):
        return answer[0].upper()

    return None


def analyze_gpt4_results(
    results_file: str, max_questions: Optional[int] = None
) -> Tuple[float, Dict, Dict, List[str], List[str]]:
    """
    Analyze results in GPT-4 format.

    Args:
        results_file: Path to results file
        max_questions: Maximum number of questions to analyze

    Returns:
        Tuple containing:
            - overall_accuracy (float)
            - category_accuracies (Dict)
            - question_type_stats (Dict)
            - correct_ids (List[str])
            - incorrect_ids (List[str])
    """
    category_performance = defaultdict(lambda: {"total": 0, "correct": 0})
    all_questions = 0
    all_correct = 0
    correct_ids = []
    incorrect_ids = []

    with open(results_file, "r") as f:
        lines = f.readlines()

    processed_questions = 0

    for line in tqdm(lines, desc="Analyzing Benchmark Results"):
        # Check if we've hit the maximum questions
        if max_questions is not None and processed_questions >= max_questions:
            break
        if line.startswith("HTTP Request:"):
            continue

        try:
            entry = json.loads(line)
            metadata = entry.get("input", {}).get("question_data", {}).get("metadata", {})
            question_id = entry.get("question_id")

            model_letter = extract_answer_letter(entry.get("model_answer"))
            correct_letter = extract_answer_letter(entry.get("correct_answer"))

            if model_letter and correct_letter:
                all_questions += 1
                processed_questions += 1
                is_correct = model_letter == correct_letter

                if is_correct:
                    all_correct += 1
                    correct_ids.append(question_id)
                else:
                    incorrect_ids.append(question_id)

                for category in metadata.get("categories", []):
                    category_performance[category]["total"] += 1
                    if is_correct:
                        category_performance[category]["correct"] += 1

        except json.JSONDecodeError:
            continue

    return process_results(
        category_performance, all_questions, all_correct, correct_ids, incorrect_ids
    )


def analyze_llama_results(
    results_file: str, max_questions: Optional[int] = None
) -> Tuple[float, Dict, Dict, List[str], List[str]]:
    """
    Analyze results in Llama format.

    Args:
        results_file: Path to results file
        max_questions: Maximum number of questions to analyze

    Returns:
        Tuple containing:
            - overall_accuracy (float)
            - category_accuracies (Dict)
            - question_type_stats (Dict)
            - correct_ids (List[str])
            - incorrect_ids (List[str])
    """
    category_performance = defaultdict(lambda: {"total": 0, "correct": 0})
    all_questions = 0
    all_correct = 0
    correct_ids = []
    incorrect_ids = []

    with open(results_file, "r") as f:
        lines = f.readlines()

    # If max_questions is set, limit the number of lines processed
    if max_questions is not None:
        lines = lines[:max_questions]

    for line in tqdm(lines, desc="Analyzing Benchmark Results"):
        if line.startswith("HTTP Request:"):
            continue

        try:
            entry = json.loads(line)
            metadata = entry.get("input", {}).get("question_data", {}).get("metadata", {})
            question_id = entry.get("question_id")

            model_letter = extract_answer_letter(entry.get("model_answer"))
            correct_letter = extract_answer_letter(entry.get("correct_answer"))

            if model_letter and correct_letter:
                all_questions += 1
                is_correct = model_letter == correct_letter

                if is_correct:
                    all_correct += 1
                    correct_ids.append(question_id)
                else:
                    incorrect_ids.append(question_id)

                for category in metadata.get("categories", []):
                    category_performance[category]["total"] += 1
                    if is_correct:
                        category_performance[category]["correct"] += 1

        except json.JSONDecodeError:
            continue

    return process_results(
        category_performance, all_questions, all_correct, correct_ids, incorrect_ids
    )


def analyze_chexagent_results(
    results_file: str, max_questions: Optional[int] = None
) -> Tuple[float, Dict, Dict, List[str], List[str]]:
    """
    Analyze results in CheXagent format.

    Args:
        results_file: Path to results file
        max_questions: Maximum number of questions to analyze

    Returns:
        Tuple containing:
            - overall_accuracy (float)
            - category_accuracies (Dict)
            - question_type_stats (Dict)
            - correct_ids (List[str])
            - incorrect_ids (List[str])
    """
    category_performance = defaultdict(lambda: {"total": 0, "correct": 0})
    all_questions = 0
    all_correct = 0
    correct_ids = []
    incorrect_ids = []

    with open(results_file, "r") as f:
        lines = f.readlines()

    # If max_questions is set, limit the number of lines processed
    if max_questions is not None:
        lines = lines[:max_questions]

    for line in tqdm(lines, desc="Analyzing Benchmark Results"):
        try:
            entry = json.loads(line)
            metadata = entry.get("input", {}).get("question_data", {}).get("metadata", {})
            question_id = entry.get("question_id")

            model_letter = extract_answer_letter(entry.get("model_answer"))
            correct_letter = extract_answer_letter(entry.get("correct_answer"))

            if model_letter and correct_letter:
                all_questions += 1
                is_correct = model_letter == correct_letter

                if is_correct:
                    all_correct += 1
                    correct_ids.append(question_id)
                else:
                    incorrect_ids.append(question_id)

                for category in metadata.get("categories", []):
                    category_performance[category]["total"] += 1
                    if is_correct:
                        category_performance[category]["correct"] += 1

        except json.JSONDecodeError:
            continue

    return process_results(
        category_performance, all_questions, all_correct, correct_ids, incorrect_ids
    )


def process_results(
    category_performance: Dict,
    all_questions: int,
    all_correct: int,
    correct_ids: Optional[List[str]] = None,
    incorrect_ids: Optional[List[str]] = None,
) -> Tuple[float, Dict, Dict, List[str], List[str]]:
    """
    Process raw results into final statistics.

    Args:
        category_performance: Dict containing performance by category
        all_questions: Total number of questions
        all_correct: Total number of correct answers
        correct_ids: List of IDs for correctly answered questions
        incorrect_ids: List of IDs for incorrectly answered questions

    Returns:
        Tuple containing:
            - overall_accuracy (float)
            - category_accuracies (Dict)
            - question_type_stats (Dict)
            - correct_ids (List[str])
            - incorrect_ids (List[str])
    """
    category_accuracies = {
        category: {
            "accuracy": stats["correct"] / stats["total"] * 100 if stats["total"] > 0 else 0,
            "total": stats["total"],
            "correct": stats["correct"],
        }
        for category, stats in category_performance.items()
    }

    question_type_stats = {}
    for qtype, categories in QUESTION_TYPES.items():
        total = sum(
            category_performance[cat]["total"] for cat in categories if cat in category_performance
        )
        correct = sum(
            category_performance[cat]["correct"]
            for cat in categories
            if cat in category_performance
        )

        question_type_stats[qtype] = {
            "accuracy": (correct / total * 100) if total > 0 else 0,
            "total": total,
            "correct": correct,
        }

    overall_accuracy = (all_correct / all_questions * 100) if all_questions > 0 else 0

    return (
        overall_accuracy,
        category_accuracies,
        question_type_stats,
        correct_ids or [],
        incorrect_ids or [],
    )


def print_analysis(
    overall_accuracy: float,
    category_accuracies: Dict,
    question_type_stats: Dict,
    correct_ids: List[str],
    incorrect_ids: List[str],
    model_name: str,
) -> None:
    """
    Print analysis results.

    Args:
        overall_accuracy: Overall accuracy percentage
        category_accuracies: Dict containing accuracy metrics by category
        question_type_stats: Dict containing stats by question type
        correct_ids: List of IDs for correctly answered questions
        incorrect_ids: List of IDs for incorrectly answered questions
        model_name: Name of the model being analyzed
    """
    total_questions = len(correct_ids) + len(incorrect_ids)
    print(
        f"\nOverall Accuracy: {overall_accuracy:.2f}% ({len(correct_ids)} correct out of {total_questions} questions)"
    )

    print("\nCategory Performance:")
    sorted_categories = sorted(
        category_accuracies.items(), key=lambda x: x[1]["accuracy"], reverse=True
    )
    for category, metrics in sorted_categories:
        print(f"{category}:")
        print(f"  Accuracy: {metrics['accuracy']:.2f}%")
        print(f"  Total Questions: {metrics['total']}")
        print(f"  Correct Questions: {metrics['correct']}")

    print("\nQuestion Type Performance:")
    sorted_types = sorted(question_type_stats.items(), key=lambda x: x[1]["accuracy"], reverse=True)
    for qtype, metrics in sorted_types:
        print(f"\n{qtype}:")
        print(f"  Accuracy: {metrics['accuracy']:.2f}%")
        print(f"  Total Questions: {metrics['total']}")
        print(f"  Correct Questions: {metrics['correct']}")
        print(f"  Categories: {', '.join(QUESTION_TYPES[qtype])}")

    # Save question IDs to JSON
    question_ids = {"correct_ids": correct_ids, "incorrect_ids": incorrect_ids}

    output_filename = f"{model_name}_question_ids.json"
    with open(output_filename, "w") as f:
        json.dump(question_ids, f, indent=2)

    print(f"\nQuestion IDs have been saved to {output_filename}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Analyze benchmark results")
    parser.add_argument("results_file", help="Path to results file")
    parser.add_argument("benchmark_dir", nargs="?", help="Path to benchmark questions directory")
    parser.add_argument(
        "--model",
        choices=["llava-med", "chexagent", "llama", "gpt4", "medrax"],
        default="gpt4",
        help="Specify model format (default: gpt4)",
    )
    parser.add_argument("--max-questions", type=int, help="Maximum number of questions to analyze")
    args = parser.parse_args()

    if args.model == "gpt4":
        results = analyze_gpt4_results(args.results_file, args.max_questions)
    elif args.model == "llama":
        results = analyze_llama_results(args.results_file, args.max_questions)
    elif args.model == "chexagent":
        results = analyze_chexagent_results(args.results_file, args.max_questions)
    elif args.model == "medrax":
        results = analyze_gpt4_results(args.results_file, args.max_questions)
    else:
        parser.error(f"Unsupported model: {args.model}")

    print_analysis(*results, args.model)