import os, re import numpy as np import pandas as pd import gradio as gr import faiss import torch from typing import List from sentence_transformers import SentenceTransformer, CrossEncoder from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # ---- Config ---- FLAN_PRIMARY = os.getenv("FLAN_PRIMARY", "google/flan-t5-large") EMBED_NAME = "sentence-transformers/all-mpnet-base-v2" RERANK_NAME = "cross-encoder/stsb-roberta-base" NUM_SLOGAN_SAMPLES = int(os.getenv("NUM_SLOGAN_SAMPLES", "16")) DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") ASSETS_DIR = "assets" # ---- Lazy models ---- _GEN_TOK = None _GEN_MODEL = None _EMBED_MODEL = None _RERANKER = None def _ensure_models(): global _GEN_TOK, _GEN_MODEL, _EMBED_MODEL, _RERANKER if _EMBED_MODEL is None: _EMBED_MODEL = SentenceTransformer(EMBED_NAME) if _RERANKER is None: _RERANKER = CrossEncoder(RERANK_NAME) if _GEN_MODEL is None: tok = AutoTokenizer.from_pretrained(FLAN_PRIMARY) mdl = AutoModelForSeq2SeqLM.from_pretrained(FLAN_PRIMARY) _GEN_TOK, _GEN_MODEL = tok, mdl.to(DEVICE) print(f"[INFO] Loaded generator: {FLAN_PRIMARY}") # ---- Data & PRE-BUILT FAISS from assets folder ---- _DATA_DF = None _INDEX = None _EMBEDDINGS = None def _ensure_index(): global _DATA_DF, _INDEX, _EMBEDDINGS if _INDEX is not None: return # Load assets from the assets directory try: data_path = os.path.join(ASSETS_DIR, "data.parquet") index_path = os.path.join(ASSETS_DIR, "faiss.index") emb_path = os.path.join(ASSETS_DIR, "embeddings.npy") _DATA_DF = pd.read_parquet(data_path) _INDEX = faiss.read_index(index_path) _EMBEDDINGS = np.load(emb_path) print(f"[INFO] Loaded pre-built FAISS index. rows={len(_DATA_DF)}, dim={_INDEX.d}") except FileNotFoundError: print("[ERROR] Pre-built assets not found. The space may fail to run.") print("[INFO] Falling back to building a tiny demo index.") _DATA_DF = pd.DataFrame({ "name": ["HowDidIDo", "Museotainment", "Movitr"], "tagline": ["Online evaluation platform", "PacMan & Louvre meet", "Crowdsourced video translation"], "description": [ "Public speaking, Presentation skills and interview practice", "Interactive AR museum tours", "Video translation with voice and subtitles" ] }) _ensure_models() vecs = _EMBED_MODEL.encode(_DATA_DF["description"].astype(str).tolist(), normalize_embeddings=True).astype(np.float32) _INDEX = faiss.IndexFlatIP(vecs.shape[1]) _INDEX.add(vecs) def recommend(query_text: str, top_k: int = 3) -> pd.DataFrame: _ensure_index() _ensure_models() q_vec = _EMBED_MODEL.encode([query_text], normalize_embeddings=True).astype("float32") scores, idxs = _INDEX.search(q_vec, top_k) out = _DATA_DF.iloc[idxs[0]].copy() out["score"] = scores[0] return out[["name","tagline","description","score"]] # ---- Refined v2 slogan generator (unchanged logic) ---- BLOCK_PATTERNS = [ r"^[A-Z][a-z]+ [A-Z][a-z]+ (Platform|Solution|System|Application|Marketplace)$", r"^[A-Z][a-z]+ [A-Z][a-z]+$", r"^[A-Z][a-z]+$", ] HARD_BLOCK_WORDS = { "platform","solution","system","application","marketplace", "ai-powered","ai powered","empower","empowering", "artificial intelligence","machine learning","augmented reality","virtual reality", } GENERIC_WORDS = {"app","assistant","smart","ai","ml","ar","vr","decentralized","blockchain"} MARKETING_VERBS = {"build","grow","simplify","discover","create","connect","transform","unlock","boost","learn","move","clarify"} BENEFIT_WORDS = {"faster","smarter","easier","better","safer","clearer","stronger","together","confidently","simply","instantly"} GOOD_SLOGANS_TO_AVOID_DUP = { "smarter care, faster decisions", "checkout built for small brands", "less guessing. more healing.", "built to grow with your cart.", "stand tall. feel better.", "train your brain to win.", "your body. your algorithm.", "play smarter. grow brighter.", "style that thinks with you." } def _tokens(s: str) -> List[str]: return re.findall(r"[a-z0-9]{3,}", s.lower()) def _jaccard(a: List[str], b: List[str]) -> float: A, B = set(a), set(b) return 0.0 if not A or not B else len(A & B) / len(A | B) def _titlecase_soft(s: str) -> str: out = [] for w in s.split(): out.append(w if w.isupper() else w.capitalize()) return " ".join(out) def _is_blocked_slogan(s: str) -> bool: if not s: return True s_strip = s.strip() for pat in BLOCK_PATTERNS: if re.match(pat, s_strip): return True s_low = s_strip.lower() for w in HARD_BLOCK_WORDS: if w in s_low: return True if s_low in GOOD_SLOGANS_TO_AVOID_DUP: return True return False def _generic_penalty(s: str) -> float: hits = sum(1 for w in GENERIC_WORDS if w in s.lower()) return min(1.0, 0.25 * hits) def _for_penalty(s: str) -> float: return 0.3 if re.search(r"\bfor\b", s.lower()) else 0.0 def _neighbor_context(neighbors_df: pd.DataFrame) -> str: if neighbors_df is None or neighbors_df.empty: return "" examples = [] for _, row in neighbors_df.head(3).iterrows(): tg = str(row.get("tagline", "")).strip() if 5 <= len(tg) <= 70: examples.append(f"- {tg}") return "\n".join(examples) def _copies_neighbor(s: str, neighbors_df: pd.DataFrame) -> bool: if neighbors_df is None or neighbors_df.empty: return False s_low = s.lower() s_toks = _tokens(s_low) for _, row in neighbors_df.iterrows(): t = str(row.get("tagline", "")).strip() if not t: continue t_low = t.lower() if s_low == t_low: return True if _jaccard(s_toks, _tokens(t_low)) >= 0.7: return True try: _ensure_models() s_vec = _EMBED_MODEL.encode([s])[0]; s_vec = s_vec / np.linalg.norm(s_vec) for _, row in neighbors_df.head(3).iterrows(): t = str(row.get("tagline", "")).strip() if not t: continue t_vec = _EMBED_MODEL.encode([t])[0]; t_vec = t_vec / np.linalg.norm(t_vec) if float(np.dot(s_vec, t_vec)) >= 0.85: return True except Exception: pass return False def _clean_slogan(text: str, max_words: int = 8) -> str: text = text.strip().split("\n")[0] text = re.sub(r"[\"“”‘’]", "", text) text = re.sub(r"\s+", " ", text).strip() text = re.sub(r"^\W+|\W+$", "", text) words = text.split() if len(words) > max_words: text = " ".join(words[:max_words]) return text def _score_candidates(query: str, cands: List[str], neighbors_df: pd.DataFrame) -> List[tuple]: if not cands: return [] _ensure_models() ce_scores = np.asarray(_RERANKER.predict([(query, s) for s in cands]), dtype=np.float32) / 5.0 q_toks = _tokens(query) results = [] neighbor_vecs = [] if neighbors_df is not None and not neighbors_df.empty: _ensure_models() for _, row in neighbors_df.head(3).iterrows(): t = str(row.get("tagline","")).strip() if t: v = _EMBED_MODEL.encode([t])[0] neighbor_vecs.append(v / np.linalg.norm(v)) for i, s in enumerate(cands): words = s.split() brevity = 1.0 - min(1.0, abs(len(words) - 5) / 5.0) wl = set(w.lower() for w in words) m_hits = len(wl & MARKETING_VERBS) b_hits = len(wl & BENEFIT_WORDS) marketing = min(1.0, 0.2*m_hits + 0.2*b_hits) g_pen = _generic_penalty(s) f_pen = _for_penalty(s) n_pen = 0.0 if neighbor_vecs: try: _ensure_models() s_vec = _EMBED_MODEL.encode([s])[0]; s_vec = s_vec / np.linalg.norm(s_vec) sim_max = max(float(np.dot(s_vec, nv)) for nv in neighbor_vecs) if neighbor_vecs else 0.0 n_pen = sim_max except Exception: n_pen = 0.0 overlap = _jaccard(q_toks, _tokens(s)) anti_copy = 1.0 - overlap score = ( 0.55*float(ce_scores[i]) + 0.20*brevity + 0.15*marketing + 0.03*anti_copy - 0.07*g_pen - 0.03*f_pen - 0.10*n_pen ) results.append((s, float(score))) return results def generate_slogan(query_text: str, neighbors_df: pd.DataFrame = None, n_samples: int = NUM_SLOGAN_SAMPLES) -> str: _ensure_models() ctx = _neighbor_context(neighbors_df) prompt = ( "You are a creative brand copywriter. Write short, original, memorable startup slogans (max 8 words).\n" "Forbidden words: app, assistant, platform, solution, system, marketplace, AI, machine learning, augmented reality, virtual reality, decentralized, empower.\n" "Focus on clear benefits and vivid verbs. Do not copy the description. Return ONLY a list, one slogan per line.\n\n" "Good Examples:\n" "Description: AI assistant for doctors to prioritize patient cases\n" "Slogan: Less Guessing. More Healing.\n\n" "Description: Payments for small online stores\n" "Slogan: Built to Grow with Your Cart.\n\n" "Description: Neurotech headset to boost focus\n" "Slogan: Train Your Brain to Win.\n\n" "Description: Interior design suggestions with AI\n" "Slogan: Style That Thinks With You.\n\n" "Bad Examples (avoid these): Innovative AI Platform / Smart App for Everyone / Empowering Small Businesses\n\n" ) if ctx: prompt += f"Similar taglines (style only):\n{ctx}\n\n" prompt += f"Description: {query_text}\nSlogans:" input_ids = _GEN_TOK(prompt, return_tensors="pt").input_ids.to(DEVICE) outputs = _GEN_MODEL.generate( input_ids, max_new_tokens=24, do_sample=True, top_k=60, top_p=0.92, temperature=1.2, num_return_sequences=n_samples, repetition_penalty=1.08 ) raw_cands = [_GEN_TOK.decode(o, skip_special_tokens=True) for o in outputs] cand_set = set() for txt in raw_cands: for line in txt.split("\n"): s = _clean_slogan(line) if not s: continue if len(s.split()) < 2 or len(s.split()) > 8: continue if _is_blocked_slogan(s): continue if _copies_neighbor(s, neighbors_df): continue cand_set.add(_titlecase_soft(s)) if not cand_set: return _clean_slogan(_GEN_TOK.decode(outputs[0], skip_special_tokens=True)) scored = _score_candidates(query_text, sorted(cand_set), neighbors_df) if not scored: return _clean_slogan(_GEN_TOK.decode(outputs[0], skip_special_tokens=True)) scored.sort(key=lambda x: x[1], reverse=True) return scored[0][0] # ---- Gradio UI ---- EXAMPLES = [ "AI coach for improving public speaking skills", "Augmented reality app for interactive museum tours", "Voice-controlled task manager for remote teams", "Machine learning system for predicting crop yields", "Platform for AI-assisted interior design suggestions", ] def pipeline(user_input: str): recs = recommend(user_input, top_k=3) slogan = generate_slogan(user_input, neighbors_df=recs, n_samples=NUM_SLOGAN_SAMPLES) recs = recs.reset_index(drop=True) recs.loc[len(recs)] = {"name":"Synthetic Example","tagline":slogan,"description":user_input,"score":np.nan} return recs[["name","tagline","description","score"]], slogan with gr.Blocks(title="SloganAI — Recommendations + Slogan Generator") as demo: gr.Markdown("## SloganAI — Top-3 Recommendations + A High-Quality Generated Slogan") with gr.Row(): with gr.Column(scale=1): inp = gr.Textbox(label="Enter a startup description", lines=3, placeholder="e.g., AI coach for improving public speaking skills") gr.Examples(EXAMPLES, inputs=inp, label="One-click examples") btn = gr.Button("Submit", variant="primary") with gr.Column(scale=2): out_df = gr.Dataframe(headers=["Name","Tagline","Description","Score"], label="Top 3 + Generated") out_sg = gr.Textbox(label="Generated Slogan", interactive=False) btn.click(fn=pipeline, inputs=inp, outputs=[out_df, out_sg]) if __name__ == "__main__": _ensure_models() _ensure_index() demo.queue().launch()