asaf1602's picture
Updated app with pre-built assets
ee8b070 verified
import os, re
import numpy as np
import pandas as pd
import gradio as gr
import faiss
import torch
from typing import List
from sentence_transformers import SentenceTransformer, CrossEncoder
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# ---- Config ----
FLAN_PRIMARY = os.getenv("FLAN_PRIMARY", "google/flan-t5-large")
EMBED_NAME = "sentence-transformers/all-mpnet-base-v2"
RERANK_NAME = "cross-encoder/stsb-roberta-base"
NUM_SLOGAN_SAMPLES = int(os.getenv("NUM_SLOGAN_SAMPLES", "16"))
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ASSETS_DIR = "assets"
# ---- Lazy models ----
_GEN_TOK = None
_GEN_MODEL = None
_EMBED_MODEL = None
_RERANKER = None
def _ensure_models():
global _GEN_TOK, _GEN_MODEL, _EMBED_MODEL, _RERANKER
if _EMBED_MODEL is None:
_EMBED_MODEL = SentenceTransformer(EMBED_NAME)
if _RERANKER is None:
_RERANKER = CrossEncoder(RERANK_NAME)
if _GEN_MODEL is None:
tok = AutoTokenizer.from_pretrained(FLAN_PRIMARY)
mdl = AutoModelForSeq2SeqLM.from_pretrained(FLAN_PRIMARY)
_GEN_TOK, _GEN_MODEL = tok, mdl.to(DEVICE)
print(f"[INFO] Loaded generator: {FLAN_PRIMARY}")
# ---- Data & PRE-BUILT FAISS from assets folder ----
_DATA_DF = None
_INDEX = None
_EMBEDDINGS = None
def _ensure_index():
global _DATA_DF, _INDEX, _EMBEDDINGS
if _INDEX is not None:
return
# Load assets from the assets directory
try:
data_path = os.path.join(ASSETS_DIR, "data.parquet")
index_path = os.path.join(ASSETS_DIR, "faiss.index")
emb_path = os.path.join(ASSETS_DIR, "embeddings.npy")
_DATA_DF = pd.read_parquet(data_path)
_INDEX = faiss.read_index(index_path)
_EMBEDDINGS = np.load(emb_path)
print(f"[INFO] Loaded pre-built FAISS index. rows={len(_DATA_DF)}, dim={_INDEX.d}")
except FileNotFoundError:
print("[ERROR] Pre-built assets not found. The space may fail to run.")
print("[INFO] Falling back to building a tiny demo index.")
_DATA_DF = pd.DataFrame({
"name": ["HowDidIDo", "Museotainment", "Movitr"],
"tagline": ["Online evaluation platform", "PacMan & Louvre meet", "Crowdsourced video translation"],
"description": [
"Public speaking, Presentation skills and interview practice",
"Interactive AR museum tours",
"Video translation with voice and subtitles"
]
})
_ensure_models()
vecs = _EMBED_MODEL.encode(_DATA_DF["description"].astype(str).tolist(), normalize_embeddings=True).astype(np.float32)
_INDEX = faiss.IndexFlatIP(vecs.shape[1])
_INDEX.add(vecs)
def recommend(query_text: str, top_k: int = 3) -> pd.DataFrame:
_ensure_index()
_ensure_models()
q_vec = _EMBED_MODEL.encode([query_text], normalize_embeddings=True).astype("float32")
scores, idxs = _INDEX.search(q_vec, top_k)
out = _DATA_DF.iloc[idxs[0]].copy()
out["score"] = scores[0]
return out[["name","tagline","description","score"]]
# ---- Refined v2 slogan generator (unchanged logic) ----
BLOCK_PATTERNS = [
r"^[A-Z][a-z]+ [A-Z][a-z]+ (Platform|Solution|System|Application|Marketplace)$",
r"^[A-Z][a-z]+ [A-Z][a-z]+$",
r"^[A-Z][a-z]+$",
]
HARD_BLOCK_WORDS = {
"platform","solution","system","application","marketplace",
"ai-powered","ai powered","empower","empowering",
"artificial intelligence","machine learning","augmented reality","virtual reality",
}
GENERIC_WORDS = {"app","assistant","smart","ai","ml","ar","vr","decentralized","blockchain"}
MARKETING_VERBS = {"build","grow","simplify","discover","create","connect","transform","unlock","boost","learn","move","clarify"}
BENEFIT_WORDS = {"faster","smarter","easier","better","safer","clearer","stronger","together","confidently","simply","instantly"}
GOOD_SLOGANS_TO_AVOID_DUP = {
"smarter care, faster decisions",
"checkout built for small brands",
"less guessing. more healing.",
"built to grow with your cart.",
"stand tall. feel better.",
"train your brain to win.",
"your body. your algorithm.",
"play smarter. grow brighter.",
"style that thinks with you."
}
def _tokens(s: str) -> List[str]:
return re.findall(r"[a-z0-9]{3,}", s.lower())
def _jaccard(a: List[str], b: List[str]) -> float:
A, B = set(a), set(b)
return 0.0 if not A or not B else len(A & B) / len(A | B)
def _titlecase_soft(s: str) -> str:
out = []
for w in s.split():
out.append(w if w.isupper() else w.capitalize())
return " ".join(out)
def _is_blocked_slogan(s: str) -> bool:
if not s: return True
s_strip = s.strip()
for pat in BLOCK_PATTERNS:
if re.match(pat, s_strip):
return True
s_low = s_strip.lower()
for w in HARD_BLOCK_WORDS:
if w in s_low:
return True
if s_low in GOOD_SLOGANS_TO_AVOID_DUP:
return True
return False
def _generic_penalty(s: str) -> float:
hits = sum(1 for w in GENERIC_WORDS if w in s.lower())
return min(1.0, 0.25 * hits)
def _for_penalty(s: str) -> float:
return 0.3 if re.search(r"\bfor\b", s.lower()) else 0.0
def _neighbor_context(neighbors_df: pd.DataFrame) -> str:
if neighbors_df is None or neighbors_df.empty:
return ""
examples = []
for _, row in neighbors_df.head(3).iterrows():
tg = str(row.get("tagline", "")).strip()
if 5 <= len(tg) <= 70:
examples.append(f"- {tg}")
return "\n".join(examples)
def _copies_neighbor(s: str, neighbors_df: pd.DataFrame) -> bool:
if neighbors_df is None or neighbors_df.empty:
return False
s_low = s.lower()
s_toks = _tokens(s_low)
for _, row in neighbors_df.iterrows():
t = str(row.get("tagline", "")).strip()
if not t:
continue
t_low = t.lower()
if s_low == t_low:
return True
if _jaccard(s_toks, _tokens(t_low)) >= 0.7:
return True
try:
_ensure_models()
s_vec = _EMBED_MODEL.encode([s])[0]; s_vec = s_vec / np.linalg.norm(s_vec)
for _, row in neighbors_df.head(3).iterrows():
t = str(row.get("tagline", "")).strip()
if not t: continue
t_vec = _EMBED_MODEL.encode([t])[0]; t_vec = t_vec / np.linalg.norm(t_vec)
if float(np.dot(s_vec, t_vec)) >= 0.85:
return True
except Exception:
pass
return False
def _clean_slogan(text: str, max_words: int = 8) -> str:
text = text.strip().split("\n")[0]
text = re.sub(r"[\"“”‘’]", "", text)
text = re.sub(r"\s+", " ", text).strip()
text = re.sub(r"^\W+|\W+$", "", text)
words = text.split()
if len(words) > max_words:
text = " ".join(words[:max_words])
return text
def _score_candidates(query: str, cands: List[str], neighbors_df: pd.DataFrame) -> List[tuple]:
if not cands:
return []
_ensure_models()
ce_scores = np.asarray(_RERANKER.predict([(query, s) for s in cands]), dtype=np.float32) / 5.0
q_toks = _tokens(query)
results = []
neighbor_vecs = []
if neighbors_df is not None and not neighbors_df.empty:
_ensure_models()
for _, row in neighbors_df.head(3).iterrows():
t = str(row.get("tagline","")).strip()
if t:
v = _EMBED_MODEL.encode([t])[0]
neighbor_vecs.append(v / np.linalg.norm(v))
for i, s in enumerate(cands):
words = s.split()
brevity = 1.0 - min(1.0, abs(len(words) - 5) / 5.0)
wl = set(w.lower() for w in words)
m_hits = len(wl & MARKETING_VERBS)
b_hits = len(wl & BENEFIT_WORDS)
marketing = min(1.0, 0.2*m_hits + 0.2*b_hits)
g_pen = _generic_penalty(s)
f_pen = _for_penalty(s)
n_pen = 0.0
if neighbor_vecs:
try:
_ensure_models()
s_vec = _EMBED_MODEL.encode([s])[0]; s_vec = s_vec / np.linalg.norm(s_vec)
sim_max = max(float(np.dot(s_vec, nv)) for nv in neighbor_vecs) if neighbor_vecs else 0.0
n_pen = sim_max
except Exception:
n_pen = 0.0
overlap = _jaccard(q_toks, _tokens(s))
anti_copy = 1.0 - overlap
score = (
0.55*float(ce_scores[i]) +
0.20*brevity +
0.15*marketing +
0.03*anti_copy -
0.07*g_pen -
0.03*f_pen -
0.10*n_pen
)
results.append((s, float(score)))
return results
def generate_slogan(query_text: str, neighbors_df: pd.DataFrame = None, n_samples: int = NUM_SLOGAN_SAMPLES) -> str:
_ensure_models()
ctx = _neighbor_context(neighbors_df)
prompt = (
"You are a creative brand copywriter. Write short, original, memorable startup slogans (max 8 words).\n"
"Forbidden words: app, assistant, platform, solution, system, marketplace, AI, machine learning, augmented reality, virtual reality, decentralized, empower.\n"
"Focus on clear benefits and vivid verbs. Do not copy the description. Return ONLY a list, one slogan per line.\n\n"
"Good Examples:\n"
"Description: AI assistant for doctors to prioritize patient cases\n"
"Slogan: Less Guessing. More Healing.\n\n"
"Description: Payments for small online stores\n"
"Slogan: Built to Grow with Your Cart.\n\n"
"Description: Neurotech headset to boost focus\n"
"Slogan: Train Your Brain to Win.\n\n"
"Description: Interior design suggestions with AI\n"
"Slogan: Style That Thinks With You.\n\n"
"Bad Examples (avoid these): Innovative AI Platform / Smart App for Everyone / Empowering Small Businesses\n\n"
)
if ctx:
prompt += f"Similar taglines (style only):\n{ctx}\n\n"
prompt += f"Description: {query_text}\nSlogans:"
input_ids = _GEN_TOK(prompt, return_tensors="pt").input_ids.to(DEVICE)
outputs = _GEN_MODEL.generate(
input_ids,
max_new_tokens=24,
do_sample=True,
top_k=60,
top_p=0.92,
temperature=1.2,
num_return_sequences=n_samples,
repetition_penalty=1.08
)
raw_cands = [_GEN_TOK.decode(o, skip_special_tokens=True) for o in outputs]
cand_set = set()
for txt in raw_cands:
for line in txt.split("\n"):
s = _clean_slogan(line)
if not s:
continue
if len(s.split()) < 2 or len(s.split()) > 8:
continue
if _is_blocked_slogan(s):
continue
if _copies_neighbor(s, neighbors_df):
continue
cand_set.add(_titlecase_soft(s))
if not cand_set:
return _clean_slogan(_GEN_TOK.decode(outputs[0], skip_special_tokens=True))
scored = _score_candidates(query_text, sorted(cand_set), neighbors_df)
if not scored:
return _clean_slogan(_GEN_TOK.decode(outputs[0], skip_special_tokens=True))
scored.sort(key=lambda x: x[1], reverse=True)
return scored[0][0]
# ---- Gradio UI ----
EXAMPLES = [
"AI coach for improving public speaking skills",
"Augmented reality app for interactive museum tours",
"Voice-controlled task manager for remote teams",
"Machine learning system for predicting crop yields",
"Platform for AI-assisted interior design suggestions",
]
def pipeline(user_input: str):
recs = recommend(user_input, top_k=3)
slogan = generate_slogan(user_input, neighbors_df=recs, n_samples=NUM_SLOGAN_SAMPLES)
recs = recs.reset_index(drop=True)
recs.loc[len(recs)] = {"name":"Synthetic Example","tagline":slogan,"description":user_input,"score":np.nan}
return recs[["name","tagline","description","score"]], slogan
with gr.Blocks(title="SloganAI — Recommendations + Slogan Generator") as demo:
gr.Markdown("## SloganAI — Top-3 Recommendations + A High-Quality Generated Slogan")
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox(label="Enter a startup description", lines=3, placeholder="e.g., AI coach for improving public speaking skills")
gr.Examples(EXAMPLES, inputs=inp, label="One-click examples")
btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=2):
out_df = gr.Dataframe(headers=["Name","Tagline","Description","Score"], label="Top 3 + Generated")
out_sg = gr.Textbox(label="Generated Slogan", interactive=False)
btn.click(fn=pipeline, inputs=inp, outputs=[out_df, out_sg])
if __name__ == "__main__":
_ensure_models()
_ensure_index()
demo.queue().launch()