Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,9 +28,9 @@ def rewrite_csv_ordered_by_winning_rate(csv_path):
|
|
| 28 |
# Save the sorted DataFrame to a new CSV file
|
| 29 |
df_sorted.to_csv(csv_path, index=False)
|
| 30 |
|
| 31 |
-
@spaces.GPU()
|
| 32 |
-
def run_inference(
|
| 33 |
-
response =
|
| 34 |
bot_message = response[0]["generated_text"]
|
| 35 |
return bot_message
|
| 36 |
|
|
@@ -39,7 +39,7 @@ def modelA_button():
|
|
| 39 |
df = pd.read_csv("models.csv")
|
| 40 |
df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1
|
| 41 |
df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"]
|
| 42 |
-
df.to_csv("models.csv"
|
| 43 |
rewrite_csv_ordered_by_winning_rate("models.csv")
|
| 44 |
|
| 45 |
def modelB_button():
|
|
@@ -47,34 +47,41 @@ def modelB_button():
|
|
| 47 |
df = pd.read_csv("models.csv")
|
| 48 |
df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1
|
| 49 |
df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"]
|
| 50 |
-
df.to_csv("models.csv"
|
| 51 |
rewrite_csv_ordered_by_winning_rate("models.csv")
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
global choice
|
| 55 |
choice["ModelA"] = modelA
|
| 56 |
-
choice["ModelB"] = modelB
|
| 57 |
df = pd.read_csv("models.csv")
|
| 58 |
df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1
|
| 59 |
-
df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1
|
| 60 |
df.to_csv("models.csv", index=False)
|
| 61 |
-
pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5,
|
| 62 |
responseA = run_inference(pipeA, prompt)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
demo0 = gr.Interface(fn=reply, inputs=[modelA_dropdown, modelB_dropdown, prompt_textbox], outputs=[gr.Textbox(label="Model A response"), gr.Textbox(label="Model B response")])
|
| 74 |
-
btnA = gr.Button("Vote for Model A!")
|
| 75 |
-
btnB = gr.Button("Vote for Model B!")
|
| 76 |
-
btnA.click(modelA_button, inputs=None, outputs=None)
|
| 77 |
-
btnB.click(modelB_button, inputs=None, outputs=None)
|
| 78 |
|
| 79 |
with gr.Blocks() as demo2:
|
| 80 |
f = open("tab.html")
|
|
@@ -84,7 +91,24 @@ with gr.Blocks() as demo2:
|
|
| 84 |
btn = gr.Button("Refresh")
|
| 85 |
btn.click(fn=refreshfn, inputs=None, outputs=t)
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
| 90 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 28 |
# Save the sorted DataFrame to a new CSV file
|
| 29 |
df_sorted.to_csv(csv_path, index=False)
|
| 30 |
|
| 31 |
+
@spaces.GPU(duration=200)
|
| 32 |
+
def run_inference(pipeline, prompt):
|
| 33 |
+
response = pipeline(prompt)
|
| 34 |
bot_message = response[0]["generated_text"]
|
| 35 |
return bot_message
|
| 36 |
|
|
|
|
| 39 |
df = pd.read_csv("models.csv")
|
| 40 |
df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1
|
| 41 |
df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"]
|
| 42 |
+
df.to_csv("models.csv")
|
| 43 |
rewrite_csv_ordered_by_winning_rate("models.csv")
|
| 44 |
|
| 45 |
def modelB_button():
|
|
|
|
| 47 |
df = pd.read_csv("models.csv")
|
| 48 |
df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1
|
| 49 |
df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"]
|
| 50 |
+
df.to_csv("models.csv")
|
| 51 |
rewrite_csv_ordered_by_winning_rate("models.csv")
|
| 52 |
|
| 53 |
+
import time
|
| 54 |
+
|
| 55 |
+
def replyA(prompt, history, modelA):
|
| 56 |
global choice
|
| 57 |
choice["ModelA"] = modelA
|
|
|
|
| 58 |
df = pd.read_csv("models.csv")
|
| 59 |
df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1
|
|
|
|
| 60 |
df.to_csv("models.csv", index=False)
|
| 61 |
+
pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda")
|
| 62 |
responseA = run_inference(pipeA, prompt)
|
| 63 |
+
r = ''
|
| 64 |
+
for c in responseA:
|
| 65 |
+
r+=c
|
| 66 |
+
time.sleep(0.0001)
|
| 67 |
+
yield r
|
| 68 |
|
| 69 |
+
def replyB(prompt, history, modelB):
|
| 70 |
+
global choice
|
| 71 |
+
choice["ModelB"] = modelB
|
| 72 |
+
df = pd.read_csv("models.csv")
|
| 73 |
+
df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1
|
| 74 |
+
df.to_csv("models.csv", index=False)
|
| 75 |
+
pipeB = pipeline("text-generation", model=models_and_tokenizers[modelB][0], tokenizer=models_and_tokenizers[modelB][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda")
|
| 76 |
+
responseB = run_inference(pipeB, prompt)
|
| 77 |
+
r = ''
|
| 78 |
+
for c in responseB:
|
| 79 |
+
r+=c
|
| 80 |
+
time.sleep(0.0001)
|
| 81 |
+
yield r
|
| 82 |
|
| 83 |
+
modelAchoice = gr.Dropdown(models_checkpoints, label="Model A")
|
| 84 |
+
modelBchoice = gr.Dropdown(models_checkpoints, label="Model B")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
with gr.Blocks() as demo2:
|
| 87 |
f = open("tab.html")
|
|
|
|
| 91 |
btn = gr.Button("Refresh")
|
| 92 |
btn.click(fn=refreshfn, inputs=None, outputs=t)
|
| 93 |
|
| 94 |
+
|
| 95 |
+
accrdnA = gr.Accordion(label="Choose model A")
|
| 96 |
+
accrdnB = gr.Accordion(label="Choose model B")
|
| 97 |
+
|
| 98 |
+
chtbA = gr.Chatbot(label="Chat with Model A")
|
| 99 |
+
chtbB = gr.Chatbot(label="Chat with Model B")
|
| 100 |
+
|
| 101 |
+
with gr.Blocks() as demo1:
|
| 102 |
+
gr.ChatInterface(fn=replyA, chatbot=chtbA, additional_inputs=modelAchoice, additional_inputs_accordion=accrdnA, submit_btn="Submit to Model A")
|
| 103 |
+
gr.ChatInterface(fn=replyB, chatbot=chtbB, additional_inputs=modelBchoice, additional_inputs_accordion=accrdnB, submit_btn="Submit to Model B")
|
| 104 |
+
btnA = gr.Button("Vote for Model A!")
|
| 105 |
+
btnB = gr.Button("Vote for Model B!")
|
| 106 |
+
btnA.click(modelA_button, inputs=None, outputs=None)
|
| 107 |
+
btnB.click(modelB_button, inputs=None, outputs=None)
|
| 108 |
+
|
| 109 |
+
demo = gr.TabbedInterface([demo1, demo2], ["Chat Arena", "Leaderboard"], title="""<h1 align='center'>SmolLM Arena</h1>
|
| 110 |
+
<h2 align='center'>Cast your vote to choose the best Small Language Model (100M-1.7B)!🚀</h2>
|
| 111 |
+
<h3 align='center'>[<a href="https://github.com/AstraBert/smollm-arena">GitHub</a>] [<a href="https://github.com/AstraBert/smollm-arena?tab=readme-ov-file#usage">Usage Guide</a>]""")
|
| 112 |
|
| 113 |
if __name__ == "__main__":
|
| 114 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|