Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
| import torch | |
| import phonemizer | |
| import librosa | |
| import io | |
| import base64 | |
| def lark(audioAsB64): | |
| # base64 to wav data conversion | |
| wav_data = base64.b64decode(audioAsB64.encode("utf-8")) | |
| # processing | |
| processor = Wav2Vec2Processor.from_pretrained( | |
| "facebook/wav2vec2-xlsr-53-espeak-cv-ft" | |
| ) | |
| model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") | |
| waveform, sample_rate = librosa.load( | |
| io.BytesIO(wav_data), sr=16000 | |
| ) # Downsample 44.1kHz to 8kHz | |
| input_values = processor( | |
| waveform, sampling_rate=sample_rate, return_tensors="pt" | |
| ).input_values | |
| with torch.no_grad(): | |
| logits = model(input_values).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| transcription = processor.batch_decode(predicted_ids) | |
| return transcription | |
| iface = gr.Interface(fn=lark, inputs="text", outputs="text") | |
| iface.launch() | |