Spaces:
Running
Running
Artyom Boyko
commited on
Commit
·
c867d05
1
Parent(s):
56f0d7c
Testing a new variant of Gradion MCP server.
Browse files- app_srv/app_srv.py +157 -95
- requirements.txt +1 -1
app_srv/app_srv.py
CHANGED
|
@@ -1,151 +1,213 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
from downloader import download_youtube_video
|
| 9 |
from video_processing import extract_frames_with_timestamps, generate_frame_descriptions
|
| 10 |
from audio_processing import transcribe_audio
|
| 11 |
from model_api import get_device_and_dtype
|
| 12 |
|
| 13 |
-
#
|
| 14 |
device, dtype = get_device_and_dtype()
|
| 15 |
|
| 16 |
-
#
|
| 17 |
DEFAULT_PROMPT = "Analyze the frame, describe what objects are in the frame, how many there are, the background and the action taking place."
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
video_data = download_youtube_video(
|
| 25 |
url=youtube_url,
|
| 26 |
video_quality=quality
|
| 27 |
)
|
| 28 |
|
| 29 |
-
# 2.
|
| 30 |
-
|
|
|
|
| 31 |
video_path=video_data['video_path'],
|
| 32 |
output_dir=video_data['data_path'],
|
| 33 |
time_step=time_step,
|
| 34 |
hw_device="cuda"
|
| 35 |
)
|
| 36 |
|
| 37 |
-
# 3.
|
| 38 |
descriptions = generate_frame_descriptions(
|
| 39 |
-
frames_dict=
|
| 40 |
custom_prompt=prompt,
|
| 41 |
device=device,
|
| 42 |
torch_dtype=dtype
|
| 43 |
)
|
| 44 |
|
| 45 |
-
# 4.
|
| 46 |
-
|
| 47 |
|
| 48 |
-
# 5.
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
if os.path.exists(frame_path):
|
| 56 |
-
with Image.open(frame_path) as img:
|
| 57 |
-
img.thumbnail((400, 400))
|
| 58 |
-
buffered = BytesIO()
|
| 59 |
-
img.save(buffered, format="JPEG", quality=85)
|
| 60 |
-
img_base64 = base64.b64encode(buffered.getvalue()).decode()
|
| 61 |
-
img_html = f'<img src="data:image/jpeg;base64,{img_base64}" style="max-height:300px; border-radius:5px; border:1px solid #ddd;">'
|
| 62 |
-
else:
|
| 63 |
-
img_html = f'<div style="color:red; padding:10px;">Image not found</div>'
|
| 64 |
-
|
| 65 |
-
# Форматирование HTML блока
|
| 66 |
-
frame_html = f"""
|
| 67 |
-
<div style="border:1px solid #e0e0e0; border-radius:8px; padding:15px; margin-bottom:20px; background:#f8f8f8;">
|
| 68 |
-
<div style="display:flex; gap:20px; align-items:flex-start;">
|
| 69 |
-
<div style="flex:1; min-width:300px; display:flex; justify-content:center; align-items:center;">
|
| 70 |
-
{img_html}
|
| 71 |
-
</div>
|
| 72 |
-
<div style="flex:2;">
|
| 73 |
-
<h3 style="margin-top:0; color:#222; font-size:16px; font-weight:600;">Timestamp: {timestamp}</h3>
|
| 74 |
-
<div style="background:#fff; padding:15px; border-radius:6px; border-left:4px solid #4285f4;
|
| 75 |
-
color:#333; font-size:14px; line-height:1.5; box-shadow:0 1px 3px rgba(0,0,0,0.1);">
|
| 76 |
-
{frame_desc}
|
| 77 |
-
</div>
|
| 78 |
-
</div>
|
| 79 |
-
</div>
|
| 80 |
-
</div>
|
| 81 |
-
"""
|
| 82 |
-
results_html.append(frame_html)
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
except Exception as e:
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
#
|
| 90 |
with gr.Blocks(title="Video Analysis Tool", css="""
|
| 91 |
.gradio-container {max-width: 1200px !important}
|
| 92 |
-
.frame-results {max-height: 70vh; overflow-y: auto; padding-right:10px;}
|
| 93 |
.output-box {border-radius: 8px !important; margin-top:15px;}
|
| 94 |
-
.
|
| 95 |
h1 {color: #1a73e8 !important;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
""") as demo:
|
| 97 |
|
| 98 |
gr.Markdown("""
|
| 99 |
# 🎥 Video Analysis Tool
|
| 100 |
-
Analyze YouTube videos - get frame-by-frame descriptions with timestamps
|
| 101 |
""")
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
with gr.Row():
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
)
|
| 110 |
-
|
| 111 |
-
label="
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
| 115 |
)
|
| 116 |
-
|
| 117 |
-
quality = gr.Dropdown(
|
| 118 |
-
label="Video Quality",
|
| 119 |
-
choices=[144, 240, 360, 480, 720, 1080, 1440, 2160],
|
| 120 |
-
value=720
|
| 121 |
-
)
|
| 122 |
-
time_step = gr.Slider(
|
| 123 |
-
label="Frame Interval (seconds)",
|
| 124 |
-
minimum=0.5,
|
| 125 |
-
maximum=30,
|
| 126 |
-
step=0.5,
|
| 127 |
-
value=2
|
| 128 |
-
)
|
| 129 |
-
submit_btn = gr.Button("Analyze Video", variant="primary")
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
label="Audio Transcription",
|
| 138 |
-
interactive=False,
|
| 139 |
-
lines=10,
|
| 140 |
-
max_lines=15,
|
| 141 |
-
elem_classes=["output-box", "audio-output"]
|
| 142 |
-
)
|
| 143 |
|
|
|
|
| 144 |
submit_btn.click(
|
| 145 |
-
fn=
|
| 146 |
inputs=[youtube_url, prompt, quality, time_step],
|
| 147 |
-
outputs=[
|
| 148 |
)
|
| 149 |
|
| 150 |
if __name__ == "__main__":
|
| 151 |
-
demo.launch(mcp_server=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
+
import json
|
| 5 |
+
import requests # Added for making HTTP requests
|
| 6 |
+
import socket # Added for getting hostname
|
| 7 |
+
|
| 8 |
+
# Import your modules
|
| 9 |
from downloader import download_youtube_video
|
| 10 |
from video_processing import extract_frames_with_timestamps, generate_frame_descriptions
|
| 11 |
from audio_processing import transcribe_audio
|
| 12 |
from model_api import get_device_and_dtype
|
| 13 |
|
| 14 |
+
# Initialize device and data type
|
| 15 |
device, dtype = get_device_and_dtype()
|
| 16 |
|
| 17 |
+
# Default prompt
|
| 18 |
DEFAULT_PROMPT = "Analyze the frame, describe what objects are in the frame, how many there are, the background and the action taking place."
|
| 19 |
|
| 20 |
+
# --- FUNCTION TO GET PUBLIC IP AND HOSTNAME (NOT FOR MCP) ---
|
| 21 |
+
def get_public_ip_and_hostname() -> str:
|
| 22 |
+
"""
|
| 23 |
+
Retrieves the public IP address and the hostname of the machine.
|
| 24 |
+
This function is intended for display purposes within the Gradio UI
|
| 25 |
+
and should NOT be exposed via MCP API.
|
| 26 |
+
"""
|
| 27 |
+
public_ip = "N/A"
|
| 28 |
+
hostname = "N/A"
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
# Get public IP address
|
| 32 |
+
response = requests.get("https://api.ipify.org?format=json", timeout=5)
|
| 33 |
+
response.raise_for_status() # Raise an exception for HTTP errors
|
| 34 |
+
public_ip = response.json().get("ip", "N/A")
|
| 35 |
+
except requests.exceptions.RequestException as e:
|
| 36 |
+
print(f"Error getting public IP: {e}")
|
| 37 |
+
public_ip = f"Error: {e}"
|
| 38 |
+
|
| 39 |
try:
|
| 40 |
+
# Get hostname
|
| 41 |
+
hostname = socket.gethostname()
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error getting hostname: {e}")
|
| 44 |
+
hostname = f"Error: {e}"
|
| 45 |
|
| 46 |
+
return f"Public IP: {public_ip} | Hostname: {hostname}"
|
| 47 |
+
|
| 48 |
+
# --- OPTIMIZED FUNCTION, RETURNING JSON STRING ---
|
| 49 |
+
def analyze_video_data(youtube_url: str, prompt: str, quality: int, time_step: float) -> str:
|
| 50 |
+
"""
|
| 51 |
+
Analyzes a YouTube video by downloading it, extracting frames, generating descriptions
|
| 52 |
+
for each frame, and transcribing the audio.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
youtube_url (str): The URL of the YouTube video to analyze.
|
| 56 |
+
prompt (str): A custom prompt to guide the frame description generation.
|
| 57 |
+
quality (int): The desired video quality in pixels (e.g., 144, 240, 360, 480, 720, 1080, 1440, 2160).
|
| 58 |
+
Note: The actual quality might vary based on available streams.
|
| 59 |
+
time_step (float): The interval in seconds at which to extract frames. The lower the value, the better the quality of the analysis result.
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
str: A JSON formatted string containing the analysis results.
|
| 63 |
+
The JSON structure includes:
|
| 64 |
+
- "status": "success" if the analysis was successful, "error" otherwise.
|
| 65 |
+
- "message": A brief description of the outcome (empty string for success,
|
| 66 |
+
or an error message for error).
|
| 67 |
+
- "frame_analysis": A list of dictionaries, where each dictionary represents a frame
|
| 68 |
+
and contains "timestamp" and "description".
|
| 69 |
+
- "audio_transcription": The transcribed text of the video's audio.
|
| 70 |
+
|
| 71 |
+
Raises:
|
| 72 |
+
Exception: Catches any exceptions during the process and returns them
|
| 73 |
+
within the JSON output for user feedback.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
results = {
|
| 77 |
+
"status": "success", # Default to success
|
| 78 |
+
"message": "", # Default message is empty for success
|
| 79 |
+
"frame_analysis": [],
|
| 80 |
+
"audio_transcription": ""
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
# 1. Download video
|
| 85 |
video_data = download_youtube_video(
|
| 86 |
url=youtube_url,
|
| 87 |
video_quality=quality
|
| 88 |
)
|
| 89 |
|
| 90 |
+
# 2. Extract frames
|
| 91 |
+
# frames_dict: {timestamp: path_to_frame_image}
|
| 92 |
+
frames_dict = extract_frames_with_timestamps(
|
| 93 |
video_path=video_data['video_path'],
|
| 94 |
output_dir=video_data['data_path'],
|
| 95 |
time_step=time_step,
|
| 96 |
hw_device="cuda"
|
| 97 |
)
|
| 98 |
|
| 99 |
+
# 3. Generate descriptions for frames
|
| 100 |
descriptions = generate_frame_descriptions(
|
| 101 |
+
frames_dict=frames_dict,
|
| 102 |
custom_prompt=prompt,
|
| 103 |
device=device,
|
| 104 |
torch_dtype=dtype
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# 4. Transcribe audio
|
| 108 |
+
transcription_text = transcribe_audio(video_data['audio_path'])
|
| 109 |
|
| 110 |
+
# 5. Formulate results structure
|
| 111 |
+
for timestamp, frame_path in frames_dict.items():
|
| 112 |
+
description = descriptions.get(timestamp, "No description available")
|
| 113 |
+
results["frame_analysis"].append({
|
| 114 |
+
"timestamp": timestamp,
|
| 115 |
+
"description": description,
|
| 116 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
results["audio_transcription"] = transcription_text
|
| 119 |
+
|
| 120 |
+
# Return formatted JSON string
|
| 121 |
+
return json.dumps(results, indent=2, ensure_ascii=False)
|
| 122 |
|
| 123 |
except Exception as e:
|
| 124 |
+
error_message = f"Processing error: {str(e)}"
|
| 125 |
+
print(f"An error occurred during video analysis: {e}") # For debugging
|
| 126 |
+
|
| 127 |
+
results["status"] = "error" # Set status to error
|
| 128 |
+
results["message"] = error_message # Set error message
|
| 129 |
+
results["frame_analysis"] = [] # Clear frame results on error
|
| 130 |
+
results["audio_transcription"] = "" # Clear transcription on error
|
| 131 |
+
|
| 132 |
+
# In case of error, return JSON string with error details
|
| 133 |
+
return json.dumps(results, indent=2, ensure_ascii=False)
|
| 134 |
|
| 135 |
+
# Create Gradio interface
|
| 136 |
with gr.Blocks(title="Video Analysis Tool", css="""
|
| 137 |
.gradio-container {max-width: 1200px !important}
|
|
|
|
| 138 |
.output-box {border-radius: 8px !important; margin-top:15px;}
|
| 139 |
+
.results-output {background:#f8f8f8 !important; padding:15px !important;}
|
| 140 |
h1 {color: #1a73e8 !important;}
|
| 141 |
+
.ip-info {
|
| 142 |
+
font-size: 0.9em;
|
| 143 |
+
color: #666;
|
| 144 |
+
margin-top: -15px; /* Adjust as needed to pull it closer to the title */
|
| 145 |
+
margin-bottom: 10px;
|
| 146 |
+
}
|
| 147 |
""") as demo:
|
| 148 |
|
| 149 |
gr.Markdown("""
|
| 150 |
# 🎥 Video Analysis Tool
|
| 151 |
+
Analyze YouTube videos - get frame-by-frame descriptions with timestamps and audio transcription.
|
| 152 |
""")
|
| 153 |
|
| 154 |
+
# NEW: Display Public IP and Hostname
|
| 155 |
+
# We use a gr.Markdown component to display the text.
|
| 156 |
+
# The key here is that get_public_ip_and_hostname is NOT directly an input/output
|
| 157 |
+
# of a button. It's called once when the app loads, or its output is static.
|
| 158 |
+
# To prevent it from being in MCP API, we typically don't expose it via gr.Interface
|
| 159 |
+
# or explicitly set show_api=False for the component if it were interactive.
|
| 160 |
+
# Here, it's a simple call rendered in Markdown, so it won't be exposed.
|
| 161 |
+
gr.Markdown(
|
| 162 |
+
f"<div class='ip-info'>{get_public_ip_and_hostname()}</div>",
|
| 163 |
+
# This component itself does not expose an API endpoint if it's just static Markdown
|
| 164 |
+
# or updated via a gr.State and not directly via a `fn` in `click` with `show_api=True`.
|
| 165 |
+
# The key is that the function `get_public_ip_and_hostname` is called
|
| 166 |
+
# during the UI definition, not as an API endpoint.
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
with gr.Row():
|
| 170 |
+
youtube_url = gr.Textbox(
|
| 171 |
+
label="YouTube Video URL",
|
| 172 |
+
value="https://www.youtube.com/watch?v=FK3dav4bA4s",
|
| 173 |
+
lines=1,
|
| 174 |
+
scale=3
|
| 175 |
+
)
|
| 176 |
+
prompt = gr.Textbox(
|
| 177 |
+
label="Analysis Prompt",
|
| 178 |
+
value=DEFAULT_PROMPT,
|
| 179 |
+
lines=3,
|
| 180 |
+
max_lines=5,
|
| 181 |
+
scale=4
|
| 182 |
+
)
|
| 183 |
+
with gr.Column(scale=2, min_width=200):
|
| 184 |
+
quality = gr.Dropdown(
|
| 185 |
+
label="Video Quality",
|
| 186 |
+
choices=[144, 240, 360, 480, 720, 1080, 1440, 2160],
|
| 187 |
+
value=480
|
| 188 |
)
|
| 189 |
+
time_step = gr.Slider(
|
| 190 |
+
label="Frame Interval (seconds)",
|
| 191 |
+
minimum=0.5,
|
| 192 |
+
maximum=30,
|
| 193 |
+
step=0.5,
|
| 194 |
+
value=30
|
| 195 |
)
|
| 196 |
+
submit_btn = gr.Button("Start Video Analysis", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
# Next row: Analysis results (gr.JSON)
|
| 199 |
+
with gr.Row():
|
| 200 |
+
results_json_viewer = gr.JSON(
|
| 201 |
+
label="Raw Analysis Results (JSON)",
|
| 202 |
+
elem_classes=["output-box", "results-output"],
|
| 203 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
# Direct binding of the button to the single processing function
|
| 206 |
submit_btn.click(
|
| 207 |
+
fn=analyze_video_data,
|
| 208 |
inputs=[youtube_url, prompt, quality, time_step],
|
| 209 |
+
outputs=[results_json_viewer]
|
| 210 |
)
|
| 211 |
|
| 212 |
if __name__ == "__main__":
|
| 213 |
+
demo.launch(share=False, mcp_server=True)
|
requirements.txt
CHANGED
|
@@ -5,7 +5,7 @@ tqdm==4.67.1
|
|
| 5 |
datasets==3.6.0
|
| 6 |
evaluate==0.4.3
|
| 7 |
accelerate==1.7.0
|
| 8 |
-
gradio==5.
|
| 9 |
gradio[mcp]
|
| 10 |
ipython==9.3.0
|
| 11 |
ipywidgets==8.1.7
|
|
|
|
| 5 |
datasets==3.6.0
|
| 6 |
evaluate==0.4.3
|
| 7 |
accelerate==1.7.0
|
| 8 |
+
gradio==5.33.0
|
| 9 |
gradio[mcp]
|
| 10 |
ipython==9.3.0
|
| 11 |
ipywidgets==8.1.7
|