artintel235 commited on
Commit
ce02b40
Β·
1 Parent(s): 796bed5

added app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel, PeftConfig
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ # config = PeftConfig.from_pretrained("/content/llama-2-7b-medichat")
6
+ model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-chat-hf", return_dict=True, load_in_8bit=True, device_map='auto')
7
+ tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf")
8
+ model = PeftModel.from_pretrained(model, "maxspin/medichat")
9
+
10
+ import gradio as gr
11
+
12
+
13
+ iface.launch()
14
+
15
+ def query_handling(query, conversation):
16
+ if "thanks" in query.lower() or "thank you" in query.lower() or "thank you very much" in query.lower():
17
+ conversation=""
18
+ return conversation
19
+
20
+ def process_response(input_string):
21
+ # Find the indices of the first [INST] and last [/INST]
22
+ start_index = input_string.find("[INST]")
23
+ end_index = input_string.rfind("[/INST]")
24
+
25
+ # If both [INST] and [/INST] are found
26
+ if start_index != -1 and end_index != -1:
27
+ # Extract the substring between [INST] and [/INST]
28
+ inst_substring = input_string[start_index:end_index + len("[/INST]")]
29
+ # Remove the extracted substring from the original string
30
+ cleaned_string = input_string.replace(inst_substring, "")
31
+ else:
32
+ # If [INST] or [/INST] is not found, keep the original string
33
+ cleaned_string = input_string
34
+
35
+ # Remove the special characters <s> and </s>
36
+ cleaned_string = cleaned_string.replace("<s>", "").replace("</s>", "").replace("[INST]","").replace("[/INST]","")
37
+
38
+ return cleaned_string
39
+
40
+
41
+ conversation=""
42
+ def predict(prompt):
43
+ global conversation
44
+ conversation = conversation+f"[INST]{prompt}[/INST]"
45
+ input_sequense = "<s>"+conversation
46
+ batch = tokenizer(f"{input_sequense}", return_tensors='pt')
47
+ batch = batch.to('cuda')
48
+ with torch.cuda.amp.autocast():
49
+ output_tokens = model.generate(**batch, max_new_tokens=4000)
50
+ response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
51
+ print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
52
+ response = process_response(response)
53
+ conversation+=response
54
+ conversation = query_handling(prompt,conversation)
55
+ print(conversation)
56
+ return response
57
+
58
+ iface = gr.Interface(
59
+ fn=predict,
60
+ inputs="text", # Accepts a single text input
61
+ outputs="text" # Outputs a single text response
62
+ )