Spaces:
Sleeping
Sleeping
finalize save dataset
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ import ijson
|
|
11 |
import pandas as pd
|
12 |
import requests
|
13 |
from datasets import Dataset, Features, Value, Sequence
|
|
|
14 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
15 |
from huggingface_hub import InferenceClient
|
16 |
|
@@ -18,16 +19,19 @@ from utils import StringIteratorIO
|
|
18 |
|
19 |
|
20 |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
21 |
-
client = InferenceClient(model_id, token=os.environ.get("
|
22 |
|
23 |
save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")
|
24 |
session = requests.Session()
|
25 |
empty_dataframe = pd.DataFrame({"1": [], "2": [], "3": []})
|
26 |
|
27 |
-
NAMESPACE = "
|
28 |
|
29 |
NUM_ROWS_PREVIEW = 3
|
30 |
-
MAX_NUM_ROWS_TO_REWRITE =
|
|
|
|
|
|
|
31 |
REWRITE_DATASET_PREVIEW = (
|
32 |
"A Machine Learning practitioner is looking for a dataset similar to '{dataset}' but slightly different. "
|
33 |
"They want you to rewrite the dataset and apply this instruction, which can be about transforming, translating or filtering the rows: {prompt}."
|
@@ -77,7 +81,7 @@ with gr.Blocks(css=css) as demo:
|
|
77 |
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
|
78 |
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
|
79 |
|
80 |
-
gr.Markdown("###
|
81 |
pretty_input_preview = gr.DataFrame(interactive=False)
|
82 |
|
83 |
gr.Markdown("### ReWrite")
|
@@ -86,10 +90,12 @@ with gr.Blocks(css=css) as demo:
|
|
86 |
with gr.Accordion("(Advanced) Edit columns", open=False):
|
87 |
output_format_dataframe = gr.DataFrame(col_count=(2, "fixed"), headers=["column", "type"])
|
88 |
rewrite_preview_button = gr.Button("Preview Results", variant="primary")
|
89 |
-
pretty_output_preview = gr.DataFrame(interactive=False)
|
90 |
rewrite_full_dataset_button = gr.Button("ReWrite Full Dataset", interactive=False)
|
|
|
91 |
full_dataset_generation_label = gr.Label(visible=False, show_label=False)
|
|
|
92 |
full_dataset_generation_success_markdown = gr.Markdown("")
|
|
|
93 |
with gr.Column(scale=4, min_width="200px"):
|
94 |
with gr.Accordion("Settings", open=False, elem_classes="settings"):
|
95 |
gr.Markdown("Save datasets to your account")
|
@@ -156,9 +162,9 @@ with gr.Blocks(css=css) as demo:
|
|
156 |
prompt=prompt,
|
157 |
)}]
|
158 |
response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format}}, "required": ["data"]}}
|
159 |
-
print("
|
160 |
yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4)
|
161 |
-
print("
|
162 |
|
163 |
|
164 |
def stream_rewrite_dataset_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str, input_preview_rows: list[dict[str, str]], output_preview_rows: list[dict[str, str]]) -> Iterator[dict[str, str]]:
|
@@ -171,18 +177,17 @@ with gr.Blocks(css=css) as demo:
|
|
171 |
output_preview_rows=json.dumps({"data": output_preview_rows}),
|
172 |
)}]
|
173 |
response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format}}, "required": ["data"]}}
|
174 |
-
print("streaming results")
|
175 |
yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4)
|
176 |
-
print("done")
|
177 |
|
178 |
|
179 |
def find_new_name(dataset: str, prompt: str) -> str:
|
180 |
messages = [{"role": "user", "content": FIND_NEW_NAME.format(prompt=prompt)}]
|
181 |
out = "".join(stream_reponse(messages))
|
182 |
if "should be" in out:
|
183 |
-
|
184 |
else:
|
185 |
-
|
|
|
186 |
|
187 |
def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
|
188 |
for i, result in enumerate(func(**kwargs)):
|
@@ -293,7 +298,7 @@ with gr.Blocks(css=css) as demo:
|
|
293 |
return {rewrite_full_dataset_button: gr.Button(interactive=False)}
|
294 |
|
295 |
|
296 |
-
@rewrite_preview_button.click(inputs=[dataset_search, pretty_input_preview, input_prompt, output_format_dataframe], outputs=[pretty_output_preview, rewrite_full_dataset_button, full_dataset_generation_label])
|
297 |
def rewrite_preview(dataset: str, pretty_input_preview_df: pd.DataFrame, prompt: str, output_format_df: pd.DataFrame) -> Iterator[pd.DataFrame]:
|
298 |
rows = [{k: json.loads(v) for k, v in row.items()} for row in pretty_input_preview_df.to_dict(orient="records")]
|
299 |
format = output_format_df.to_dict(orient="records")
|
@@ -301,34 +306,68 @@ with gr.Blocks(css=css) as demo:
|
|
301 |
output_rows = []
|
302 |
print(f"ReWriting {dataset} preview with instruction '{prompt}'")
|
303 |
yield {rewrite_full_dataset_button: gr.Button(interactive=False), full_dataset_generation_label: gr.Label(visible=False)}
|
|
|
|
|
|
|
|
|
304 |
for row in stream_rewrite_dataset_preview_row_by_row(dataset=dataset, rows=rows, prompt=prompt, format=format):
|
305 |
output_rows.append({k: json.dumps(row[k], ensure_ascii=False) for k in output_format_df["column"]})
|
306 |
yield {pretty_output_preview: gr.DataFrame(pd.DataFrame(output_rows))}
|
307 |
yield {rewrite_full_dataset_button: gr.Button(interactive=True)}
|
308 |
|
309 |
|
310 |
-
@rewrite_full_dataset_button.click(inputs=[dataset_search, subset_dropdown, split_dropdown, pretty_input_preview, pretty_output_preview, input_prompt, output_format_dataframe, dataset_info_json, select_namespace_dropdown], outputs=[full_dataset_generation_label, full_dataset_generation_success_markdown])
|
311 |
def rewrite_full_dataset(dataset: str, subset: str, split: str, pretty_input_preview_df: pd.DataFrame, pretty_output_preview_df: pd.DataFrame, prompt: str, output_format_df: pd.DataFrame, dataset_info: dict[str, Any], namespace: str, oauth_token: Optional[gr.OAuthToken]) -> Iterator[pd.DataFrame]:
|
312 |
input_preview_rows = [{k: json.loads(v) for k, v in row.items()} for row in pretty_input_preview_df.to_dict(orient="records")]
|
313 |
output_preview_rows = [{k: json.loads(v) for k, v in row.items()} for row in pretty_output_preview_df.to_dict(orient="records")]
|
314 |
format = output_format_df.to_dict(orient="records")
|
315 |
format = {"properties": {x["column"]: json.loads(x["type"]) for x in format}, "required": [x["column"] for x in format]}
|
316 |
-
output_rows = []
|
317 |
num_examples = dataset_info["splits"][split]["num_examples"]
|
318 |
total = min(num_examples, MAX_NUM_ROWS_TO_REWRITE)
|
319 |
print(f"ReWriting {dataset} (full dataset) with instruction '{prompt}'")
|
320 |
yield {full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": 0.}, visible=True)}
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
|
334 |
demo.launch()
|
|
|
11 |
import pandas as pd
|
12 |
import requests
|
13 |
from datasets import Dataset, Features, Value, Sequence
|
14 |
+
from datasets.fingerprint import Hasher
|
15 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
16 |
from huggingface_hub import InferenceClient
|
17 |
|
|
|
19 |
|
20 |
|
21 |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
22 |
+
client = InferenceClient(model_id, token=os.environ.get("INFERENCE_API_HF_TOKEN"))
|
23 |
|
24 |
save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")
|
25 |
session = requests.Session()
|
26 |
empty_dataframe = pd.DataFrame({"1": [], "2": [], "3": []})
|
27 |
|
28 |
+
NAMESPACE = "dataset-rewriter"
|
29 |
|
30 |
NUM_ROWS_PREVIEW = 3
|
31 |
+
MAX_NUM_ROWS_TO_REWRITE = 1000
|
32 |
+
NUM_PARALLEL_CALLS = 10
|
33 |
+
NUM_ROWS_PER_CALL = 10
|
34 |
+
MAX_PROGRESS_UPDATES_PER_SECOND = 4
|
35 |
REWRITE_DATASET_PREVIEW = (
|
36 |
"A Machine Learning practitioner is looking for a dataset similar to '{dataset}' but slightly different. "
|
37 |
"They want you to rewrite the dataset and apply this instruction, which can be about transforming, translating or filtering the rows: {prompt}."
|
|
|
81 |
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
|
82 |
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
|
83 |
|
84 |
+
gr.Markdown("### Sample")
|
85 |
pretty_input_preview = gr.DataFrame(interactive=False)
|
86 |
|
87 |
gr.Markdown("### ReWrite")
|
|
|
90 |
with gr.Accordion("(Advanced) Edit columns", open=False):
|
91 |
output_format_dataframe = gr.DataFrame(col_count=(2, "fixed"), headers=["column", "type"])
|
92 |
rewrite_preview_button = gr.Button("Preview Results", variant="primary")
|
|
|
93 |
rewrite_full_dataset_button = gr.Button("ReWrite Full Dataset", interactive=False)
|
94 |
+
gr.Markdown("#### Output")
|
95 |
full_dataset_generation_label = gr.Label(visible=False, show_label=False)
|
96 |
+
pretty_output_preview = gr.DataFrame(interactive=False)
|
97 |
full_dataset_generation_success_markdown = gr.Markdown("")
|
98 |
+
pretty_full_dataset_generation_output = gr.DataFrame(interactive=False, visible=False)
|
99 |
with gr.Column(scale=4, min_width="200px"):
|
100 |
with gr.Accordion("Settings", open=False, elem_classes="settings"):
|
101 |
gr.Markdown("Save datasets to your account")
|
|
|
162 |
prompt=prompt,
|
163 |
)}]
|
164 |
response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format}}, "required": ["data"]}}
|
165 |
+
print(f"Streaming preview of {dataset} with instruction '{prompt}'")
|
166 |
yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4)
|
167 |
+
print(f"Done streaming preview of {dataset} with instruction '{prompt}'")
|
168 |
|
169 |
|
170 |
def stream_rewrite_dataset_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str, input_preview_rows: list[dict[str, str]], output_preview_rows: list[dict[str, str]]) -> Iterator[dict[str, str]]:
|
|
|
177 |
output_preview_rows=json.dumps({"data": output_preview_rows}),
|
178 |
)}]
|
179 |
response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "items": format}}, "required": ["data"]}}
|
|
|
180 |
yield from ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4)
|
|
|
181 |
|
182 |
|
183 |
def find_new_name(dataset: str, prompt: str) -> str:
|
184 |
messages = [{"role": "user", "content": FIND_NEW_NAME.format(prompt=prompt)}]
|
185 |
out = "".join(stream_reponse(messages))
|
186 |
if "should be" in out:
|
187 |
+
out = dataset.split("/")[-1] + out.split("should be", 1)[1].replace(" ", "-").replace(".", "").replace(",", "")
|
188 |
else:
|
189 |
+
out = dataset.split("/")[-1] + prompt.replace(" ", "-")
|
190 |
+
return out[:90] + "-" + Hasher.hash(prompt)[:4]
|
191 |
|
192 |
def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
|
193 |
for i, result in enumerate(func(**kwargs)):
|
|
|
298 |
return {rewrite_full_dataset_button: gr.Button(interactive=False)}
|
299 |
|
300 |
|
301 |
+
@rewrite_preview_button.click(inputs=[dataset_search, pretty_input_preview, input_prompt, output_format_dataframe], outputs=[pretty_output_preview, rewrite_full_dataset_button, full_dataset_generation_label, pretty_full_dataset_generation_output])
|
302 |
def rewrite_preview(dataset: str, pretty_input_preview_df: pd.DataFrame, prompt: str, output_format_df: pd.DataFrame) -> Iterator[pd.DataFrame]:
|
303 |
rows = [{k: json.loads(v) for k, v in row.items()} for row in pretty_input_preview_df.to_dict(orient="records")]
|
304 |
format = output_format_df.to_dict(orient="records")
|
|
|
306 |
output_rows = []
|
307 |
print(f"ReWriting {dataset} preview with instruction '{prompt}'")
|
308 |
yield {rewrite_full_dataset_button: gr.Button(interactive=False), full_dataset_generation_label: gr.Label(visible=False)}
|
309 |
+
yield {
|
310 |
+
pretty_output_preview: gr.DataFrame(visible=True),
|
311 |
+
pretty_full_dataset_generation_output: gr.DataFrame(visible=False),
|
312 |
+
}
|
313 |
for row in stream_rewrite_dataset_preview_row_by_row(dataset=dataset, rows=rows, prompt=prompt, format=format):
|
314 |
output_rows.append({k: json.dumps(row[k], ensure_ascii=False) for k in output_format_df["column"]})
|
315 |
yield {pretty_output_preview: gr.DataFrame(pd.DataFrame(output_rows))}
|
316 |
yield {rewrite_full_dataset_button: gr.Button(interactive=True)}
|
317 |
|
318 |
|
319 |
+
@rewrite_full_dataset_button.click(inputs=[dataset_search, subset_dropdown, split_dropdown, pretty_input_preview, pretty_output_preview, input_prompt, output_format_dataframe, dataset_info_json, select_namespace_dropdown], outputs=[full_dataset_generation_label, full_dataset_generation_success_markdown, pretty_output_preview, pretty_full_dataset_generation_output])
|
320 |
def rewrite_full_dataset(dataset: str, subset: str, split: str, pretty_input_preview_df: pd.DataFrame, pretty_output_preview_df: pd.DataFrame, prompt: str, output_format_df: pd.DataFrame, dataset_info: dict[str, Any], namespace: str, oauth_token: Optional[gr.OAuthToken]) -> Iterator[pd.DataFrame]:
|
321 |
input_preview_rows = [{k: json.loads(v) for k, v in row.items()} for row in pretty_input_preview_df.to_dict(orient="records")]
|
322 |
output_preview_rows = [{k: json.loads(v) for k, v in row.items()} for row in pretty_output_preview_df.to_dict(orient="records")]
|
323 |
format = output_format_df.to_dict(orient="records")
|
324 |
format = {"properties": {x["column"]: json.loads(x["type"]) for x in format}, "required": [x["column"] for x in format]}
|
|
|
325 |
num_examples = dataset_info["splits"][split]["num_examples"]
|
326 |
total = min(num_examples, MAX_NUM_ROWS_TO_REWRITE)
|
327 |
print(f"ReWriting {dataset} (full dataset) with instruction '{prompt}'")
|
328 |
yield {full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": 0.}, visible=True)}
|
329 |
+
yield {pretty_full_dataset_generation_output: empty_dataframe}
|
330 |
+
yield {
|
331 |
+
pretty_output_preview: gr.DataFrame(visible=False),
|
332 |
+
pretty_full_dataset_generation_output: gr.DataFrame(visible=True),
|
333 |
+
}
|
334 |
+
|
335 |
+
num_parallel_calls = max(1, min(total // NUM_ROWS_PER_CALL, NUM_PARALLEL_CALLS))
|
336 |
+
parallel_input_rows = list(batched(islice(stream_rows(dataset=dataset, subset=subset, split=split), total), n=total // num_parallel_calls))
|
337 |
+
parallel_output_rows = [[] for _ in range(num_parallel_calls)]
|
338 |
+
|
339 |
+
def run(i):
|
340 |
+
for batch_rows in batched(parallel_input_rows[i], n=NUM_ROWS_PER_CALL):
|
341 |
+
for row in stream_rewrite_dataset_row_by_row(dataset=dataset, rows=batch_rows, prompt=prompt, format=format, input_preview_rows=input_preview_rows, output_preview_rows=output_preview_rows):
|
342 |
+
parallel_output_rows[i].append({k: json.dumps(row[k], ensure_ascii=False) for k in output_format_df["column"]})
|
343 |
+
yield 1
|
344 |
+
|
345 |
+
current = 0
|
346 |
+
_last_time = time.time()
|
347 |
+
for step in iflatmap_unordered(run, kwargs_iterable=[{"i": i} for i in range(num_parallel_calls)]):
|
348 |
+
current += step
|
349 |
+
if _last_time + 1 / MAX_PROGRESS_UPDATES_PER_SECOND < time.time():
|
350 |
+
_last_time = time.time()
|
351 |
+
yield {
|
352 |
+
full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": current / total}),
|
353 |
+
pretty_full_dataset_generation_output: gr.DataFrame(pd.DataFrame([row for rows in parallel_output_rows for row in rows]))
|
354 |
+
}
|
355 |
+
yield {
|
356 |
+
full_dataset_generation_label: gr.Label({f"⚙️ ReWriting {dataset}": current / total}),
|
357 |
+
pretty_full_dataset_generation_output: gr.DataFrame(pd.DataFrame([row for rows in parallel_output_rows for row in rows]))
|
358 |
+
}
|
359 |
+
print(f"Done ReWriting {dataset} (full dataset) with instruction '{prompt}'")
|
360 |
+
|
361 |
+
output_rows = [{k: json.loads(row[k]) for k in output_format_df["column"]} for rows in parallel_output_rows for row in rows]
|
362 |
+
repo_id = namespace + "/" + find_new_name(dataset, prompt)
|
363 |
+
yield {full_dataset_generation_label: gr.Label({f"✅ ReWriting {dataset}": len(output_rows) / total, f"⚙️ Saving to {repo_id}": 0.})}
|
364 |
+
token = oauth_token.token if oauth_token else save_dataset_hf_token
|
365 |
+
print(f"Saving {repo_id}")
|
366 |
+
ds = Dataset.from_list(output_rows)
|
367 |
+
ds.push_to_hub(repo_id, config_name=subset, split=split, token=token)
|
368 |
+
yield {full_dataset_generation_label: gr.Label({f"✅ ReWriting {dataset}": len(output_rows) / total, f"✅ Saving to {repo_id}": 1.})}
|
369 |
+
yield {full_dataset_generation_success_markdown: f"# Open the ReWriten dataset in a new tab: [{repo_id}](https://huggingface.co/datasets/{repo_id})"}
|
370 |
+
print(f"Saved {repo_id}")
|
371 |
|
372 |
|
373 |
demo.launch()
|