Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,30 @@
|
|
1 |
-
from
|
2 |
-
from engine.ner_engine import NERInfer
|
3 |
-
from engine.audio_chunk import AudioChunk
|
4 |
-
import glob
|
5 |
-
import time
|
6 |
import gradio as gr
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
13 |
text = ""
|
14 |
-
def streaming_process(streaming_audio_file) -> str:
|
15 |
-
global text
|
16 |
-
text = speech2text.process_streaming(streaming_audio_file)
|
17 |
-
# return text
|
18 |
-
|
19 |
-
def output_streaming(text_streaming,text01)-> str:
|
20 |
-
text_streaming+=text01
|
21 |
-
return text_streaming
|
22 |
-
|
23 |
def recorded_process(recorded_audio_file) -> str:
|
24 |
"""
|
25 |
to get both input
|
26 |
and use speech2text for get text
|
27 |
"""
|
28 |
-
text =
|
29 |
-
|
30 |
-
return {"text": text, "entities": result}
|
31 |
|
32 |
|
33 |
-
def
|
34 |
-
|
35 |
-
text =
|
36 |
-
|
37 |
-
return {"text": text, "entities": result}
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
def clear_inputs_and_outputs() -> list:
|
41 |
"""
|
@@ -44,23 +33,10 @@ def clear_inputs_and_outputs() -> list:
|
|
44 |
audio_chunk.remove_chunk()
|
45 |
return [None, None, None, None]
|
46 |
|
|
|
47 |
text_streaming = ""
|
48 |
|
49 |
with gr.Blocks() as demo:
|
50 |
-
"""
|
51 |
-
buld gradio app
|
52 |
-
|
53 |
-
"""
|
54 |
-
gr.Markdown(
|
55 |
-
"""
|
56 |
-

|
57 |
-
|
58 |
-
# Automatic Speech Recognition
|
59 |
-
|
60 |
-
##### Experience real-time, accurate, and multilingual speech-to-text conversion with our cutting-edge ASR technology.
|
61 |
-
"""
|
62 |
-
)
|
63 |
-
|
64 |
with gr.Tab("Record File"):
|
65 |
with gr.Row():
|
66 |
with gr.Column():
|
@@ -69,7 +45,7 @@ with gr.Blocks() as demo:
|
|
69 |
clr_btn = gr.Button(value="Clear", variant="secondary")
|
70 |
sub_btn = gr.Button(value="submit")
|
71 |
with gr.Column():
|
72 |
-
lbl_output = gr.
|
73 |
|
74 |
clr_btn.click(
|
75 |
fn=clear_inputs_and_outputs,
|
@@ -100,34 +76,4 @@ with gr.Blocks() as demo:
|
|
100 |
text_streaming = output_streaming(text_streaming,text)
|
101 |
gr.Textbox(value=text, label="Result", autofocus=True)
|
102 |
|
103 |
-
|
104 |
-
# with gr.Row():
|
105 |
-
# with gr.Column():
|
106 |
-
# upl_input = gr.Audio( type="filepath", label="Upload a file")
|
107 |
-
# with gr.Row():
|
108 |
-
# clr_btn = gr.Button(value="Clear", variant="secondary")
|
109 |
-
# sub_btn = gr.Button(value="submit")
|
110 |
-
# gr.Examples(examples=[
|
111 |
-
# os.path.join(os.path.dirname(__file__),"examples/politics.mp3"),
|
112 |
-
# os.path.join(os.path.dirname(__file__),"examples/law1.mp3"),
|
113 |
-
# os.path.join(os.path.dirname(__file__),"examples/law2.mp3"),
|
114 |
-
# os.path.join(os.path.dirname(__file__),"examples/law3.mp3"),
|
115 |
-
# os.path.join(os.path.dirname(__file__),"examples/economy.mp3"),
|
116 |
-
# os.path.join(os.path.dirname(__file__),"examples/general.mp3")
|
117 |
-
# ],
|
118 |
-
# inputs = upl_input)
|
119 |
-
# with gr.Column():
|
120 |
-
# lbl_output = gr.HighlightedText(label="Result")
|
121 |
-
|
122 |
-
# clr_btn.click(
|
123 |
-
# fn=clear_inputs_and_outputs,
|
124 |
-
# inputs=[],
|
125 |
-
# outputs=[upl_input, lbl_output]
|
126 |
-
# )
|
127 |
-
# sub_btn.click(
|
128 |
-
# fn=uploaded_process,
|
129 |
-
# inputs=[upl_input],
|
130 |
-
# outputs=[lbl_output]
|
131 |
-
# )
|
132 |
-
|
133 |
-
demo.launch(server_name="0.0.0.0", server_port=8085)
|
|
|
1 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import time
|
4 |
+
p = pipeline(
|
5 |
+
task="automatic-speech-recognition",
|
6 |
+
model="arthoho66/model_005_2000",
|
7 |
+
token="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",
|
8 |
+
# device="cuda:0",
|
9 |
+
)
|
10 |
text = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def recorded_process(recorded_audio_file) -> str:
|
12 |
"""
|
13 |
to get both input
|
14 |
and use speech2text for get text
|
15 |
"""
|
16 |
+
text = p(recorded_audio_file)["text"]
|
17 |
+
return text
|
|
|
18 |
|
19 |
|
20 |
+
def streaming_process(streaming_audio_file) -> str:
|
21 |
+
global text
|
22 |
+
text = p(streaming_audio_file)["text"]
|
23 |
+
return text
|
|
|
24 |
|
25 |
+
def output_streaming(text_streaming,text01)-> str:
|
26 |
+
text_streaming+=text01
|
27 |
+
return text_streaming
|
28 |
|
29 |
def clear_inputs_and_outputs() -> list:
|
30 |
"""
|
|
|
33 |
audio_chunk.remove_chunk()
|
34 |
return [None, None, None, None]
|
35 |
|
36 |
+
|
37 |
text_streaming = ""
|
38 |
|
39 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with gr.Tab("Record File"):
|
41 |
with gr.Row():
|
42 |
with gr.Column():
|
|
|
45 |
clr_btn = gr.Button(value="Clear", variant="secondary")
|
46 |
sub_btn = gr.Button(value="submit")
|
47 |
with gr.Column():
|
48 |
+
lbl_output = gr.Textbox(label="Result")
|
49 |
|
50 |
clr_btn.click(
|
51 |
fn=clear_inputs_and_outputs,
|
|
|
76 |
text_streaming = output_streaming(text_streaming,text)
|
77 |
gr.Textbox(value=text, label="Result", autofocus=True)
|
78 |
|
79 |
+
demo.launch(server_name="0.0.0.0", server_port=8085)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|