File size: 10,700 Bytes
ffbb48e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import argparse
import logging
import torch
import torch.nn as nn
from torch import cuda
from torch.autograd import Variable
from torch.utils.data import DataLoader,Dataset
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils
from PIL import Image
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
import random
from custom_transform import CustomResize
from custom_transform import CustomToTensor
from AD_Dataset import AD_Dataset
from AD_2DSlicesData import AD_2DSlicesData
from AlexNet2D import alexnet
from AlexNet3D import AlexNet
import ResNet2D
import ResNet3D
logging.basicConfig(
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO)
parser = argparse.ArgumentParser(description="Starter code for JHU CS661 Computer Vision HW3.")
parser.add_argument("--network_type", "--nt", default="AlexNet2D", choices=["AlexNet2D", "AlexNet3D", "ResNet2D", "ResNet3D"],
help="Deep network type. (default=AlexNet)")
parser.add_argument("--load",
help="Load saved network weights.")
parser.add_argument("--save", default="best_model",
help="Save network weights.")
parser.add_argument("--augmentation", default=True, type=bool,
help="Save network weights.")
parser.add_argument("--epochs", default=20, type=int,
help="Epochs through the data. (default=20)")
parser.add_argument("--learning_rate", "-lr", default=1e-3, type=float,
help="Learning rate of the optimization. (default=0.01)")
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument("--estop", default=1e-2, type=float,
help="Early stopping criteria on the development set. (default=1e-2)")
parser.add_argument("--batch_size", default=1, type=int,
help="Batch size for training. (default=1)")
parser.add_argument("--optimizer", default="Adam", choices=["SGD", "Adadelta", "Adam"],
help="Optimizer of choice for training. (default=Adam)")
parser.add_argument("--gpuid", default=[0], nargs='+', type=int,
help="ID of gpu device to use. Empty implies cpu usage.")
# feel free to add more arguments as you need
def main(options):
# Path configuration
TRAINING_PATH = 'train.txt'
TESTING_PATH = 'test.txt'
IMG_PATH = './Image'
if options.network_type == 'AlexNet3D':
trg_size = (224, 224, 224)
elif options.network_type == 'AlexNet2D':
trg_size = (224, 224)
elif options.network_type == 'ResNet3D':
trg_size = (110, 110, 110)
elif options.network_type == 'ResNet2D':
trg_size = (224, 224)
if options.network_type == "AlexNet3D" or "ResNet3D":
transformations = transforms.Compose([CustomResize(options.network_type, trg_size),
CustomToTensor(options.network_type)
])
dset_train = AD_2DSlicesData(IMG_PATH, TRAINING_PATH, transformations)
dset_test = AD_2DSlicesData(IMG_PATH, TESTING_PATH, transformations)
elif options.network_type == 'AlexNet2D' or "ResNet2D":
transformations = transforms.Compose([transforms.Resize(trg_size, Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
dset_train = AD_2DSlicesData(IMG_PATH, TRAINING_PATH, transformations)
dset_test = AD_2DSlicesData(IMG_PATH, TESTING_PATH, transformations)
# Use argument load to distinguish training and testing
if options.load is None:
train_loader = DataLoader(dset_train,
batch_size = options.batch_size,
shuffle = True,
num_workers = 4,
drop_last = True
)
else:
# Only shuffle the data when doing training
train_loader = DataLoader(dset_train,
batch_size=options.batch_size,
shuffle=False,
num_workers=4,
drop_last=True
)
test_loader = DataLoader(dset_test,
batch_size = options.batch_size,
shuffle = False,
num_workers = 4,
drop_last=True
)
use_cuda = (len(options.gpuid) >= 1)
# if options.gpuid:
# cuda.set_device(options.gpuid[0])
# Training process
if options.load is None:
# Initial the model
if options.network_type == 'AlexNet3D':
model = AlexNet()
elif options.network_type == 'AlexNet2D':
model = alexnet(pretrained=True)
elif options.network_type == 'ResNet2D':
model = ResNet2D.resnet152(pretrained=True)
elif options.network_type == 'ResNet3D':
model = ResNet3D.ResNet()
if use_cuda > 0:
model = nn.DataParallel(model, device_ids=options.gpuid).cuda()
else:
model.cpu()
# Binary cross-entropy loss
criterion = torch.nn.CrossEntropyLoss()
lr = options.learning_rate
optimizer = eval("torch.optim." + options.optimizer)(model.parameters(), lr,
#momentum=options.momentum,
weight_decay=options.weight_decay)
# Prepare for label encoding
last_dev_avg_loss = float("inf")
best_accuracy = float("-inf")
# main training loop
for epoch_i in range(options.epochs):
logging.info("At {0}-th epoch.".format(epoch_i))
train_loss = 0.0
correct_cnt = 0.0
model.train()
for it, train_data in enumerate(train_loader):
data_dic = train_data
if use_cuda:
imgs, labels = Variable(data_dic['image']).cuda(), Variable(data_dic['label']).cuda()
else:
imgs, labels = Variable(data_dic['image']), Variable(data_dic['label'])
# add channel dimension: (batch_size, D, H ,W) to (batch_size, 1, D, H ,W)
# since 3D convolution requires 5D tensors
img_input = imgs#.unsqueeze(1)
integer_encoded = labels.data.cpu().numpy()
# target should be LongTensor in loss function
ground_truth = Variable(torch.from_numpy(integer_encoded)).long()
if use_cuda:
ground_truth = ground_truth.cuda()
train_output = model(img_input)
train_prob_predict = F.softmax(train_output, dim=1)
_, predict = train_prob_predict.topk(1)
loss = criterion(train_output, ground_truth)
train_loss += loss
correct_this_batch = (predict.squeeze(1) == ground_truth).sum()
correct_cnt += correct_this_batch
accuracy = float(correct_this_batch) / len(ground_truth)
logging.info("batch {0} training loss is : {1:.5f}".format(it, loss.data[0]))
logging.info("batch {0} training accuracy is : {1:.5f}".format(it, accuracy))
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_avg_loss = train_loss / (len(dset_train) / options.batch_size)
train_avg_acu = float(correct_cnt) / len(dset_train)
logging.info("Average training loss is {0:.5f} at the end of epoch {1}".format(train_avg_loss.data[0], epoch_i))
logging.info("Average training accuracy is {0:.5f} at the end of epoch {1}".format(train_avg_acu, epoch_i))
# validation -- this is a crude esitmation because there might be some paddings at the end
dev_loss = 0.0
correct_cnt = 0.0
model.eval()
for it, test_data in enumerate(test_loader):
data_dic = test_data
if use_cuda:
imgs, labels = Variable(data_dic['image'], volatile=True).cuda(), Variable(data_dic['label'], volatile=True).cuda()
else:
imgs, labels = Variable(data_dic['image'], volatile=True), Variable(data_dic['label'], volatile=True)
img_input = imgs#.unsqueeze(1)
integer_encoded = labels.data.cpu().numpy()
ground_truth = Variable(torch.from_numpy(integer_encoded), volatile=True).long()
if use_cuda:
ground_truth = ground_truth.cuda()
test_output = model(img_input)
test_prob_predict = F.softmax(test_output, dim=1)
_, predict = test_prob_predict.topk(1)
loss = criterion(test_output, ground_truth)
dev_loss += loss
correct_this_batch = (predict.squeeze(1) == ground_truth).sum()
correct_cnt += (predict.squeeze(1) == ground_truth).sum()
accuracy = float(correct_this_batch) / len(ground_truth)
logging.info("batch {0} dev loss is : {1:.5f}".format(it, loss.data[0]))
logging.info("batch {0} dev accuracy is : {1:.5f}".format(it, accuracy))
dev_avg_loss = dev_loss / (len(dset_test) / options.batch_size)
dev_avg_acu = float(correct_cnt) / len(dset_test)
logging.info("Average validation loss is {0:.5f} at the end of epoch {1}".format(dev_avg_loss.data[0], epoch_i))
logging.info("Average validation accuracy is {0:.5f} at the end of epoch {1}".format(dev_avg_acu, epoch_i))
torch.save(model.state_dict(), open(options.save + ".nll_{0:.3f}.epoch_{1}".format(dev_avg_loss.data[0], epoch_i), 'wb'))
last_dev_avg_loss = dev_avg_loss
if __name__ == "__main__":
ret = parser.parse_known_args()
options = ret[0]
if ret[1]:
logging.warning("unknown arguments: {0}".format(parser.parse_known_args()[1]))
main(options)
|